

Исследование динамики многосекционного манипулятора типа «хобот» # 09, сентябрь 2010 авторы: Карпенко А. П., Шмонин А. М.

электронное

УДК 519.6

МГТУ им. Н.Э. Баумана, apkarpenko@mail.ru

Введение

Известной альтернативой традиционным манипуляторам являются манипуляторы, построенные основе механизмов параллельной на кинематики [1]. Такие манипуляторы обладают более высокой маневренностью, могут обеспечивать высокую точность позиционирования схвата, имеют высокие допустимые нагрузки, используют однотипные приводы (например, только линейные). С другой стороны, эти манипуляторы требуют использования большого количества приводов и более сложных систем управления, имеют меньший размер рабочей области и более высокую более сложны в проектировании. Указанные недостатки не стоимость, являются препятствием для все более широкого распространения параллельных манипуляторов в тех областях, в которых требуется высокая маневренность, точное позиционирование и высокие нагрузки.

В работе односекционный трехсекционный рассматриваются И манипуляторы, построенные на основе одного из наиболее известных механизмов параллельной кинематики - платформы Стюарта (гексапода) [1].

В отличие от традиционных манипуляторов, манипуляторы на основе гексапода имеют замкнутые кинематические цепи и воспринимают нагрузку как пространственные фермы. Т.е. в данном случае штанги этих механизмов работают на растяжение-сжатие, что ведет к повышению жесткости всей конструкции и, как следствие, к повышению точности позиционирования и грузоподъемности механизмов [2]. Обзор одно- и многосекционных манипуляторов, построенных на основе гексаподов, дан в публикации [3].

Работа выполнена в контексте исследований, посвященных разработке научных основ роботов-манипуляторов типа «хобот», построенных на базе механизмов параллельной кинематики. Варианты структуры секций таких манипуляторов рассмотрены в работах [4, 5].

Для математического моделирования манипуляторов параллельной кинематики наиболее удобны в использовании программные комплексы *блочного моделирования*, которые имеют в качестве входного языка графический язык иерархических блок-схем [6]. Наиболее известными представителями этих комплексов являются *MatLab/Simulink* (MathWorks, Inc.), *EASY5* (Boeing), *MATRIX_X/SystemBuild* (Integrated Systems, Inc.), *VisSim* (Visual Solution, Inc.). В работе, как наиболее доступный и полнофункциональный, используется программный комплекс *MatLab/Simulink* [7].

1. Постановка задачи

Вообще говоря, в качестве приводов (актуаторов) линейных перемещений штанг гексапода могут быть использованы гидравлические, пневматические и электрические приводы. Каждый из этих приводов обладает своими достоинствами и недостатками. В работе в качестве приводов штанг, как односекционного, так и трехсекционного манипуляторов рассматриваются электрические приводы, которые имеют невысокую цену, большой ресурс и достаточно компактны. Полагается, что в качестве систем управления приводами штанг используются двухконтурные системы управления на основе ПИД-регуляторов. Структура системы управления приводом *i*-ой штанги представлена на рисунке 1, где $l_i^* = l_i^*(t)$, $l_i = l_i(t)$ - требуемый и реализованный законы изменения длины штанги, $v_i = v_i(t) = l_i(t)$, $a_i = a_i(t) = l_i(t)$ - соответствующие скорость и ускорение.

Рисунок 1 – Структура системы управления штангой гексапода

Коэффициенты при пропорциональной, интегральной и дифференциальной составляющих ПИД-регуляторов обозначим $k_{i,P}, k_{i,I}, k_{i,D}$ соответственно; i = 1,2 Отметим, что частным случаем ПИД-регулятора является П-регулятор (когда $k_I = k_D = 0$).

1.1. Односекционный манипулятор на основе гексапода состоит из неподвижного основания, подвижной платформы и шести штанг, каждая из которых состоит из двух пулуштанг и активной поступательной кинематической пары (привода) - рисунок 2.

Система координат $0_0 X_0 Y_0 Z_0$ на рисунке 2 представляет собой инерциальную систему, центр которой связан с центром основания (точкой 0_0), система координат $0_1 X_1 Y_1 Z_1$ - подвижная система, центр которой связан с центром масс платформы (точкой 0_1).

 $A_{0,1}, A_{0,2}, ..., A_{0,6}$ - шарниры Гука; $A_{1,1}, A_{1,2}, ..., A_{1,6}$ - сферические шарниры; $B_{1,1}, B_{1,2}, ..., B_{1,6}$ – поступательные кинематические пары **Рисунок 2** - Схема односекционного манипулятора

Механизм имеет тринадцать подвижных звеньев и восемнадцать кинематических пар. Легко показать, что его подвижность равна шести [3].

Введем следующие обозначения ($j \in [1:6]$):

- *D*₀ диаметр окружности, на которой лежат точки крепления штанг к основанию; *D*₀ = 200 мм;
- *D*₁ диаметр окружности, на которой лежат точки крепления штанг к платформе; *D*₁ = 200 мм;
- H_1 толщина платформы; $H_1 = 10$ мм;
- M_1 масса платформы; $M_1 = 0,1$ кг (материал платформы алюминий);
- $l_{1,j} = l_{1,j}(t)$ длина *j*-ой штанги;
- *d*_{1,*j*} диаметр штанги; *d*_{1,*j*} =10 мм;
- $m_{1,i}$ масса штанги с приводом; $m_{1,i} = 0,3$ кг;

- L_1^{\min} , L_1^{\max} нижняя и верхняя предельные высоты центра платформы (точки 0_1); $L_1^{\min} = 200$ мм, $L_1^{\max} = 238$ мм;
- *m*_{схв} масса схвата манипулятора.

Кроме того, примем следующие обозначения:

- $v_{1,j} = v_{1,j}(t)$ скорость изменения длины *j*-ой штанги;
- $a_{1,j} = a_{1,j}(t)$ ускорение изменения длины этой штанги.

Положим, что $\frac{2}{3}$ массы штанги сосредоточено в ее середине (в месте соединения полуштанг). Указанное распределение массы штанги моделирует ее привод. Схват манипулятора представляется в виде точечной массы, расположенной на оси $0_1 Y$ на расстоянии 50 мм от точки 0_1 . Рассматриваются следующие варианты: $m_{cxB} = 0, 5, 10, 15, 20$ кг.

1.2. Трехсекционный манипулятор. В этом манипуляторе платформа первого гексапода является основанием второго, а платформа второго гексапода – основанием третьего.

Легко видеть, что подвижность трехступенчатого манипулятора равна 18. Введем следующие обозначения (*i* = 1,2,3, *j* ∈ [1:6]):

- *D_i* диаметр окружности, на которой лежат точки крепления штанг к *i* -ой платформе; *D*₁ = 180 мм; *D*₂ = 162 мм; *D*₃ = 146 мм;
- H_i толщина платформы; $H_i = 10$ мм;
- *M*₁ масса платформы; *M*₁ = 0,1 кг; *M*₂ = 0,8 кг; *M*₃ = 0,66 кг (материал платформ – алюминий);
- *d_{i,j}* диаметр штанг, связывающих *i*-ю платформу с предыдущей платформой или с основанием гексапода (для первой платформы),
 d_{i,j} =10 мм;

- $l_{i,j} = l_{i,j}(t), v_{i,j} = v_{i,j}(t), a_{i,j} = a_{i,j}(t)$ аналогично определяемые длины штанг, скорости и ускорения изменения их длин, соответственно;
- $m_{i,j}$ масса каждой из указанных штанг с приводом; $m_{i,j} = 0,3$ кг;
- *L_i* ∈ [*L_i^{min}*, *L_i^{max}*] высота *i*-ой секции манипулятора; *L₁* ∈ [240,340];
 L₂ ∈ [206,306]; *L₃* ∈ [175,275];
- L_i^{\min} , L_i^{\max} нижняя и верхняя предельные высоты *i*-ой секции.

Закон распределения масс всех штанг полагается таким же, как в односекционном манипуляторе. Полагается также, что относительно схвата действуют соглашения, принятые в п. 1.1.

Аналогично тому, как это показано на рисунке 2, свяжем с основанием манипулятора инерциальную систему координат $0_0 X_0 Y_0 Z_0$, а с центром *i*-ой платформы (точкой 0_i) – подвижную систему координат $0_i X_i Y_i Z_i$.

2. Математическая модель односекционного манипулятора

САТІА-модель [8] односекционного манипулятора представлена на рисунке 3.

Рисунок 3 – САТІА-модель односекционного манипулятора

Эксперименты с этой моделью позволили определить диапазоны изменения длин штанг манипулятора, которые обеспечивают исходное и два его крайних положения (рисунки 4 – 6): $l_{1,j}^{\min} = 243 \, \text{мm}$; $l_{1,j}^{\max} = 343 \, \text{мm}$; $j \in [1:6]$.

Рисунок 4 – Исходное положение манипулятора: $L_1^{\text{max}} = 238 \text{мм}$

Рисунок 5 – Крайнее правое положение манипулятора: $L_1^{\min} = 200 MM$

Рисунок 6 – Крайнее левое положение манипулятора: $L_1^{\min} = 200 MM$

Разработана иерархическая *Simulink*-модель односекционного манипулятора, включающая в себя четыре следующих уровня:

- 1) структурный уровень;
- 2) уровень описания ступени манипулятора;
- 3) уровень описания штанги манипулятора;
- 4) уровень описания системы управления манипулятором.

Модель манипулятора на структурном уровне приведена на рисунке 7.

Модель второго иерархического уровня представляет рисунок 8.

Рисунок 8 – Simulink-модель односекционного манипулятора – второй иерархический уровень

Здесь *Body1* – модель платформы, *Body* – модель схвата, *Leg1* - *Leg6* – модели штанг, *CG* – датчик положения центра масс платформы в пространстве, *Body_a* – датчик линейных ускорений схвата. Платформа в модели *Body1* представляет собой однородное жесткое цилиндрическое тело.

На рисунке 9 представлена модель штанги *Leg* без датчиков, а на рисунке 10 - та же модель, но с датчиками.

Модель штанги состоит из блоков Body1, Body2, Body3, Body4, которые соединены между собой блоками Prismatic, моделирующими линейные перемещения. Блок Prismatic1 представляет собой модель кинематической пары. Блоки Prismatic 2, Prismatic 3 предназначены для моделирования упругостей штанг (в развитие работы). В данной модели указанные блоки служат только для объединения блоков Bodv2, Bodv3 и блоков Bodv1, Bodv4 соответственно. Отметим, что 2/3 массы штанги сосредоточены в блоках Body1, Body3, a 1/3 массы - в блоках Body2, Body4. Блоки Body2, Body4 соединены с блоками Gimbal6 и Universal, которые представляют собой модели сферического универсального шарнира И шарнира (шарнира Гука), соответственно. Блоки Joint Spring&Damper моделируют силы трения

в указанных шарнирах; блок *Rule system 1* представляет собой модель системы управления штангой.

Модель, представленная на рисунке 10, включает в себя датчики Joint Sensor, которые измеряют значения следующих величины:

- *F_B1* усилие в шарнире;
- M_Bl момент в шарнире;
- *V_lg1* скорость перемещения штока актуатора;
- *X_lg1* величину перемещения штока актуатора;
- a_lgl ускорение штока актуатора;
- F_lgl усилия в актуаторе;
- *М_А1* моменты сил в универсальном шарнире;
- F_Al усилие в универсальном шарнире;
- *ВА1* изменение длины штанги манипулятора.

Модель системы управления *Rule system 1* представлена на рисунке 11. Модель включает в себя модели двух ПИД-регуляторов (п. 1), а также модели нелинейностей типа «насыщение» *Saturation*.

Рисунок 11 – Simulink-модель системы управления длиной штанги

3. Динамика односекционного манипулятора

Рассмотрим движение манипулятора, при котором центр масс платформы 0_1 остается в плоскости симметрии манипулятора $0_0 X_0 Y_0$. При этом, очевидно, кинематика и динамика штанги $A_{0,1} - A_{1,1}$ оказывается такой

же, как штанги $A_{0,6} - A_{1,6}$, штанги $A_{0,2} - A_{1,2}$ - такой же, как штанги $A_{0,5} - A_{1,5}$, штанги $A_{0,3} - A_{1,3}$ - такой же, как штанги $A_{0,4} - A_{1,4}$ (рисунок 4). Это позволяет вместо шести штанг говорить только о трех штангах $A_{0,1} - A_{1,1}$, $A_{0,2} - A_{1,2}$, $A_{0,3} - A_{1,3}$, которые далее называются первой, второй и третьей штангами соответственно.

Введем следующие обозначения (i = 1, 2, 3, j = 0, 1):

- $F_{1,i} = F_{1,i}(t)$ осевое усилие в приводе *i* -ой штанги;
- $F_{1,i}^x$, $F_{1,i}^y$, $F_{1,i}^z$ проекции усилия $F_{1,i}$ на оси X_0, Y_0, Z_0 системы координат $0_0 X_0 Y_0 Z_0$ соответственно;
- $M_{j,i} = M_{j,i}(t)$ момент в шарнире $A_{j,i}$;
- $M_{j,i}^{x}$, $M_{j,i}^{y}$, $M_{j,i}^{z}$ проекции момента $M_{j,i}$ на соответствующие оси системы координат $0_{0}X_{0}Y_{0}Z_{0}$.

3.1. Исследование переходных процессов в односекционном манипуляторе выполнено для случая использования пропорциональных регуляторов: $k_{1,P} = 1,5$, $k_{1,I} = 0$, $k_{1,D} = 0$; $k_{2,P} = 5$, $k_{2,I} = 0$, $k_{2,D} = 0$. Здесь значения коэффициентов $k_{1,P}$, $k_{2,P}$ подобраны таким образом, чтобы при массе схвата $m_{\text{схв}} = 20$ кг время переходного процесса составляло примерно 2.5 с. Длины $l_{1,1}$, $l_{1,2}$, $l_{1,3}$ первой (и шестой), второй (и пятой), третьей (и четвертой) штанг изменялись по законам, приведенным на рисунке 12.

Рисунок 12 – Изменение во времени длин штанг односекционного манипулятора

Характер изменения соответствующих осевых усилий в приводах иллюстрирует рисунок 13. Отметим, что установившиеся значения этих усилий отличны от нуля, поскольку обеспечивают компенсацию силы тяжести элементов манипулятора и схвата.

Рисунок 13 – Изменение во времени осевых усилий в приводах штанг односекционного манипулятора

На рисунке 14 представлены моменты в шарнирах $A_{1,1}$, $A_{1,2}$, $A_{1,3}$. Отметим, что эти моменты обусловлены силами трения в шарнирах и отличны от нуля только в те периоды времени, когда угловые скорости вращения штанг также отличны от нуля.

Рисунок 14 – Изменение во времени моментов в шарнирах $A_{1,1}$, $A_{1,2}$, $A_{1,3}$ односекционного манипулятора

Представляют интерес также графики изменения во времени ускорения схвата a_{cxe} и координат центра масс платформы X_{μ} , Y_{μ} , Z_{μ} (точки 0_1), представленные на рисунках 15, 16 соответственно. Первый из указанных рисунков показывает, что в условиях исследования перегрузка схвата достигает 0.46 единиц.

Рисунок 15 – Изменение во времени ускорения схвата односекционного манипулятора

Рисунок 16 – Координаты центра масс платформы односекционного манипулятора в функции времени

3.2. Исследование предельных усилий в приводах. На первом этапе в данном разделе изучаются предельные осевые усилия в приводах манипулятора при варьировании коэффициентов ПИД-регуляторов и массы схвата (таблица 1).

Dopuque	Коэффициенты ПИД-регуляторов						
Бариант	<i>k</i> _{1,<i>P</i>}	$k_{1,I}$	<i>k</i> _{1,D}	<i>k</i> _{2,<i>P</i>}	<i>k</i> _{2,<i>I</i>}	<i>k</i> _{2,D}	
а	1,5	0	0	5.0	0	0	
б	2,0	0	0	8,0	0	0,2	
В	2,0	0	0	7,0	0	0,3	
Г	2,5	0,1	0,2	8,0	0,1	0	
Д	2,5	0,1	0,2	8,0	0,1	0	

Таблица 1 - Варианты настроек ПИД-регуляторов

Все приведенные в таблице 1 варианты настроек регуляторов обеспечивает время переходного процесса, равное ~2,5 с. Заметим, что в варианте а) оба ПИД-регулятора являются П-регуляторами, в вариантах б), в) - П- и ПД-регуляторами, в вариантах г), д) – ПИД- и ПИ-регуляторами, соответсвенно.

В таблице 2 представлены предельные осевые усилия $F_{1,1}(t)$, возникающие в приводе первой штанги манипулятора.

Вариант	Усилие <i>F</i> _{1,1} , <i>H</i>					
настроек регуляторов	$m_{cxb} = 0$	$m_{cxe} = 5$	$m_{cxb} = 10$	$m_{cxe} = 15$	$m_{cxb} = 20$	
a)	86; -32	161; -122	252; -211	353; -301	458; -392	
б)	110; -32	202; -121	329; -210	462; -300	600; -390	
B)	100; -32	185; -122	296; -213	415; -304	526; -395	
г)	137; -37	260; -127	424; -222	612; -316	728; -409	
д)	136; -35	263; -136	428; -236	602; -337	774; -437	

Таблица 2 – Предельные максимальные (знак плюс) и минимальные (знак минус) осевые усилия в приводе первой штанги

Аналогичные данные для привода второй штанги представлены в таблице 3.

Таблица 3 – Предельные осевые усилия в приводе второй штанги

Вариант	Усилие <i>F</i> _{1,2} , <i>H</i>						
настроек	$m_{m} = 0$	$m_{m} = 5$	$m_{m} = 10$	$m_{m} = 15$	$m_{m} = 20$		
регуляторов	CXB	CXB	CXB _ C	CXB	CXB _ C		
a)	38; -126	140; -230	242; -356	344; -493	446; -637		
б)	42; -160	139; -284.2	240; -447	342; -626	443; -817		
B)	39; -146	141; -253	244; -412	347;-570	450; -730		
г)	50; -198	147; -360	256; -570	364; -818	470; -986		
д)	48 [.] -196	159 [.] -363	275 - 583	392 - 813	509; -		
	10, 190	10, 505	2,2, 303	<i>572</i> , 015	1042		

Предельные осевые усилия в приводах третьей штанги меньше по модулю соответствующих усилий в приводах первой и второй штанг и поэтому не рассматриваются.

Таблицы 2, 3 иллюстрируют рисунки 17, 18.

На втором этапе выполнено исследование предельных радиальных усилий в приводах штанг. Максимальные радиальные усилия имеют место в приводе третьей штанги манипулятора. Эти усилия в рассматриваемом диапазоне изменения массы схвата (0 - 20 кг) не зависят от этой массы и составляют приближенно 12, 16, 15, 20, 21 Н для вариантов а), б), в), г), д) настроек регуляторов соответственно.

Рисунок 17 – Зависимость максимальных осевых усилий в приводах односекционного манипулятора от массы схвата

Рисунок 18 – Зависимость минимальных осевых усилий в приводах односекционного манипулятора от массы схвата

4. Математическая модель трехсекционного манипулятора

Как и для односекционного манипулятора, в данном случает также предварительно была разработана *CATIA*-модель манипулятора (рисунок 19). На рисунках 20 – 21 представлены исходное и крайние положения этого манипулятора.

Рисунок 19 – САТІА-модель трехсекционного манипулятора

Рисунок 20 – Исходное положение манипулятора

б)

Рисунок 21 – Крайнее правое положение манипулятора

Эксперименты с *CATIA*-моделью манипулятора позволили определить диапазоны изменения длин штанг каждой из секций, которые обеспечивают требуемые диапазоны изменения высот этих секций (п. 1): $l_{1,i}^{\min} = 243 \, \text{мm}$, $l_{1,i}^{\max} = 343 \, \text{мm}$; $l_{2,i}^{\min} = 208 \, \text{мm}$, $l_{2,i}^{\max} = 308 \, \text{мm}$; $l_{3,i}^{\min} = 178 \, \text{мm}$, $l_{3,i}^{\max} = 278 \, \text{мm}$; $i \in [1:6]$.

Рисунок 22 – Крайнее левое положение манипулятора

Как и *Simulink*-модель односекционного манипулятора, модель трехсекционного манипулятора имеет четыре иерархических уровня, из которых от первой из моделей отличается только структурный уровень (рисунок 23).

5. Исследование динамики трехсекционного манипулятора

Манипулятор в исходном положении полагается симметричным относительно плоскости $0_0 X_0 Y_0$. Рассматривается движение манипулятора, при котором центр масс третьей платформы 0_3 остается в этой плоскости.

Кинематика и динамика штанг $A_{(i-1),1} - A_{i,1}$ оказывается при этом такой же, как штанг $A_{(i-1),6} - A_{i,6}$, штанг $A_{(i-1),2} - A_{i,2}$ - такой же, как штанг $A_{(i-1),5} - A_{i,5}$, штанг $A_{(i-1),3} - A_{i,3}$ - такой же, как штанги $A_{(i-1),4} - A_{i,4}$; i = 1,2,3. Это позволяет говорить далее только о штангах $A_{(i-1),1} - A_{i,1}$, $A_{(i-1),2} - A_{i,2}$, $A_{(i-1),3} - A_{i,3}$, которые называются первой, второй и третьей штангами соответствующей секции манипулятора.

Рисунок 23 – Simulink-модель трехсекционного манипулятора: структурный уровень

Введем следующие обозначения (i, j = 1, 2, 3):

- $F_{i,j} = F_{i,j}(t)$ усилие в приводе *i* -ой штанги *j* -ой секции;
- $F_{i,j}^x$, $F_{i,j}^y$, $F_{i,j}^z$ проекции усилия $F_{i,j}$ на оси X_0 , Y_0 , Z_0 системы координат $0_0 X_0 Y_0 Z_0$ соответственно.

5.1. Исследование переходных процессов в трехсекционном манипуляторе выполнено, как и в односекционном манипуляторе, для пропорциональных регуляторов, коэффициенты которых имеют значения:

 $k_{1,P} = 1,5$, $k_{1,I} = 0$, $k_{1,D} = 0$; $k_{2,P} = 5$, $k_{2,I} = 0$, $k_{2,D} = 0$. Масса схвата принята равной $m_{\text{схв}} = 20$ кг. Длины первой (и шестой), второй (и пятой), третьей (и четвертой) штанг первой секции манипулятора изменялись по законам, приведенным на рисунке 12. Графики соответствующих осевых усилий в приводах первой секции иллюстрирует рисунок 24.

Рисунок 24 – Изменение во времени осевых усилий в приводах первой секции трехсекционного манипулятора

Из рисунка 24 следует, что по сравнению с односекционным манипулятором максимальные осевые усилия в приводах штанг первой ступени

трехсекционного манипулятора больше примерно в 10 (10; 9) раз для приводов первой (второй; третьей) штанг, соответственно.

Аналогичные графики для приводов второй секции приведены на рисунке 25, а для приводов третьей секции – на рисунке 26.

Рисунок 25 – Изменение во времени осевых усилий в приводах второй секции трехсекционного манипулятора

Рисунок 26 – Изменение во времени осевых усилий в приводах третьей секции трехсекционного манипулятора

Рисунки 24 – 26 показывают, что максимальное осевое усилие в приводе первой штанги третьей секции примерно в 3,7 раз меньше, чем соответствующее максимальное усилие в приводе первой секции; в приводах второй и третьей штанг - в три раза меньше, чем в соответствующих приводах первой секции.

Изменение во времени ускорения схвата иллюстрирует рисунок 27.

Рисунок 27 – Изменение во времени ускорения схвата в трехсекционном манипуляторе

Из рисунка 27 следует, что максимальная перегрузка схвата достигает, в условиях исследования, 2,3 единиц.

5.2. Исследование максимальных усилий в приводах выполнено для вариантов а), г) настроек ПИД-регуляторов (таблица 1).

Отметим прежде, что исследование максимально достижимого ускорения схвата массой $m_{\rm cxB} = 20$ кг показывает, что при использовании варианта а) настроек ПИД-регулятора это ускорение составляет 2,5 единицы, а при использовании варианта г) – 6,9 единиц.

5.2.1. Первая секция. В таблице 4 представлены предельные осевые усилия, возникающие в приводе первой штанги первой секции манипулятора. Таблица показывает, что при массе схвата $m_{cxs} = 0$ максимальные усилия в приводе штанги варьируются от 576 H до 1204 H; в варианте настроек регуляторов а) эти усилия в 6.7 раза превышают такие же усилия в односекционном манипуляторе, а в варианте г) - в 8.9 раза.

Аналогичные результаты для привода второй штанги первой секции трехсекционного манипулятора представлены в таблице 5.

Таблица 4 – Предельные осевые усилия в приводе первой штанги первой секции трехсекционного манипулятора

Вариант					
настроек	$m_{cxb} = 0$	$m_{cxe} = 5$	$m_{cxb} = 10$	$m_{cxe} = 15$	$m_{cxb} = 20$
a)	576; -55	1593; -145	2610; -235	3627; -325	4644; -415

Электронный журнал, №9 сентябрь 2010г. http://technomag.edu.ru/

г)	1204; -127	3603; -353	6003; -579	8388; -8056	10770; -1031
----	------------	------------	------------	-------------	--------------

Таблица 5 – Предельные осевые усилия в приводе второй штанги первой секции манипулятора

Вариант	Усилие <i>F</i> _{1,2} , <i>H</i>				
настроек	$m_{cxb} = 0$	$m_{cxb} = 5$	$m_{cxb} = 10$	$m_{cxe} = 15$	$m_{cxb} = 20$
a)	37; -624	51; -1598	83; -2572	114; -3547	146; -4522
г)	81; -1301	170; -3631	268; -5952	367; -8291	465; -10618

Таблицы 4, 5 иллюстрируют рисунки 28, 29.

Рисунок 28 – Зависимость максимального осевого усилия в приводах первой секции трехсекционного манипулятора от массы схвата

Отметим, что предельные осевые усилия, возникающие в приводе третьей штанги первой секции манипулятора, не представлены потому, что эти усилия меньше по модулю рассмотренных усилий в приводах первой и второй штанг.

Из рисунков 28, 29 следует, что имеет место практически линейная зависимость предельных осевых усилий в приводах первой секции манипулятора от массы схвата (таблица 6).

Наличие сил трения в шарнирах манипулятора приводит к появлению в приводах также радиальных усилий. Исследование показывает, что максимальные радиальные усилия имеют место в приводе третьей штанги первой секции. При изменении массы схвата в диапазоне от 0 до 20 кг эти усилия практически не зависят от этой массы и для варианта а) настроек регуляторов равны 21 H, а для варианта г) – 36 H.

Таблица 6 – Линейные аппроксимации предельных осевых усилий в приводах первой секции манипулятора

Вариант	F_1^{\max}, \mathbf{H}	F_1^{\min}, H
настроек	1 -	1
регуляторов		
a)	$576 + 204m_{cx6}$	$-625 - 195m_{cxb}$
E)	1205 / 490	1201 166.00
1)	$1203 + 480 m_{cxe}$	$-1301 - 400 m_{cxb}$

5.2.2. Вторая секция. В данной секции максимальные по модулю осевые усилия возникают в приводах второй и третьей штанг (таблицы 7, 8).

Таблица 7 – Предельные осевые усилия в приводе второй штанги второй секции трехсекционного манипулятора

Вариант	Усилие F _{2,2} , H					
настроек	$m_{cxe} = 0$	$m_{cxe} = 5$	$m_{cxe} = 10$	$m_{cxe} = 15$	$m_{cxb} = 20$	
a)	532; -122	1320; -307	2188; -493	3056; -677	3924; -864	
г)	1091; -123	3170; -310	5348; -498	7497; -686	9681; -874	

Таблица 8 – Предельные осевые усилия в приводе третьей штанги второй секции трехсекционного манипулятора

Вариант		Ι			
настроек	$m_{cxb} = 0$	$m_{cxb} = 5$	$m_{cxb} = 10$	$m_{cxe} = 15$	$m_{cxb} = 20$
a)	102; -416	282; -1193	463; -2014	642; -2835	832; -3655
г)	103; -877	283; -2868	463; -4885	646; -6903	837; -8920

Таблицы 7, 8 иллюстрируют рисунки 30, 31, которые показывают, что зависимости предельных осевых усилий в приводах второй секции манипулятора от массы схвата хорошо приближаются линейными функциями (таблица 9).

Рисунок 30 – Зависимость максимального осевого усилия в приводах второй секции трехсекционного манипулятора от массы схвата

Таблица 9 – Линейные аппроксимации предельных осевых усилий в приводах второй секции манипулятора

Вариант	F_2^{\max} ,H	F_2^{\min}, H
настроек	2 ,	2 /
регуляторов		
a)	$532 + 169m_{cxg}$	$-416 - 156m_{cxb}$
г)	$1091 + 425m_{cxe}$	$-877 - 400m_{cxe}$

Максимальные радиальные усилия в данном случае также имеют место в приводе третьей штанги. Как и для первой секции, эти усилия практически не зависят от массы схвата и для варианта а) настроек регуляторов составляют 26 H, а для варианта г) – 45 H.

5.2.3. Третья секция. В данной секции максимальные по модулю осевые усилия возникают, как и в первой секции, в приводах первой и второй штанг (таблицы 10, 11, рисунки 32, 33).

Таблица 10 – Предельные осевые усилия в приводе первой штанги третьей секции трехсекционного манипулятора

Вариант	Усилие <i>F</i> _{1,3} , <i>H</i>				
настроек	$m_{cxb} = 0$	$m_{cxe} = 5$	$m_{cxe} = 10$	$m_{cxe} = 15$	$m_{cxe} = 20$
a)	74; -19	359; -104	649; -200	940; -297	1230; -394
Г)	153; -29	821; -146	1489; -266	2157; -385	2826; -505

Таблица 11 – Предельные осевые усилия в приводе второй штанги третьей секции трехсекционного манипулятора

Вариант	Усилие <i>F</i> _{2,3} , <i>H</i>					
настроек	$m_{cxb} = 0$	$m_{cxb} = 5$	$m_{cxe} = 10$	$m_{cxe} = 15$	$m_{cxe} = 20$	
a)	30; -92	136; 427	257; -765	377; -1104	498; -1442	
г)	29; -198	139; -982	265; -1767	392; -2551	520; -3327	

Рисунок 32 – Зависимость максимального осевого усилия в приводах третьей секции трехсекционного манипулятора от массы схвата

Аппроксимация зависимостей предельных осевых усилий в приводах третьей секции манипулятора от массы схвата линейными функциями приведена в таблице 12.

Рисунок 33 – Зависимость минимального осевого усилия в приводах третьей секции трехсекционного манипулятора от массы схвата

Таблица 12 – Линейные аппроксимации предельных осевых усилий в приводах третьей секции манипулятора

Вариант	F_3^{\max}, H	F_3^{\min}, H
настроек		
регуляторов		
a)	$74 + 57 m_{cxe}$	$-92 - 67m_{cxb}$
г)	$1091 + 425m_{cxb}$	$-198 - 157 m_{cxb}$

Максимальные радиальные усилия в приводах третьей секции манипулятора практически не зависят от массы схвата и для варианта а) настроек регуляторов равны примерно 6 H, а для варианта г) – 10 H.

Заключение

В работе созданы *MatLab/Simulink* математические модели односекционного и трехсекционного манипуляторов на основе механизма параллельной кинематики типа «гексапод», для управления приводами штанг которого используется двухконтурная системы управления на основе ПИД-регуляторов.

Для односекционного манипулятора разработаны его *CATIA*-модель, позволившая определить требуемые диапазоны изменения длин штанг манипулятора, а также иерархическая *Simulink*-модель. С помощью последней модели выполнено исследование осевых усилий в приводах, моментов в шарнирах, а также ускорения схвата. Кроме того, выполнено широкое исследование предельных осевых и радиальных усилий в приводах манипулятора.

Для трехсекционного манипулятора также разработана его *CATIA*-модель и иерархическая *Simulink*-модель. С помощью последней модели выполнено исследование осевых усилий в приводах каждой из секций манипулятора, а также исследование предельных осевых и радиальных усилий в этих приводах.

Результаты работы могут быть использованы при проектировании рассматриваемых манипуляторов.

Работа выполнена в рамках аналитической ведомственной целевой программы «Развитие потенциала высшей школы (2009 – 2010 годы)», проект 2.1.2/1509.

Литература

- 1. Merlet J.P. Parallel Robots. Solid mechanics and its applications.- Kluwer Academic Publishers, V. 74, 2000.- 394 p.
- Глазунов В.А. и др. Разработка манипуляционных механизмов с параллельно-перекрестной структурой // Проблемы машиностроения и надежности машин, 2008, №2, с. 90 – 100.
- 3. Волкоморов С.В., Каганов Ю.Т. Карпенко А.П. Моделирование и оптимизация некоторых параллельных механизмов // Информационные технологии, Приложение, 2010, №5, с. 1-32.
- Каганов Ю.Т., Карпенко А.П. Математическое моделирование кинематики и динамики робота-манипулятора типа «хобот».
 Математические модели секции манипулятора, как механизма параллельной кинематики типа «трипод» // Наука и образование: электронное научно- техническое издание, 2009,10. [Электронный ресурс] / (<u>http://technomag.edu.ru/doc/133262.html</u>).
- Каганов Ю.Т., Карпенко А.П. Математическое моделирование кинематики и динамики робота-манипулятора типа «хобот».
 Математические модели секции манипулятора, как механизма параллельной кинематики типа «гексапод» // Наука и образование: электронное научно- техническое издание, 2009, 11. [Электронный ресурс] / (http://technomag.edu.ru/doc/133731.html).
- 6. Колесов Ю.Б., Сениченков Ю.Б. Имитационное моделирование сложных динамических систем [Электронный ресурс] / (http://www.exponenta.ru/soft/others/mvs/ds_sim.asp).
- Махов, А.А. Моделирование механических систем с помощью пакета расширения SimMechanics [Электронный ресурс] / (http://exponenta.ru/educat/systemat/mahov/simmechanics.asp).
- 8. Мартынюк, В.А. САТІА. Начало работы [Электронный ресурс] / (http://bigor.bmstu.ru/).