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Motion of a dynamic controlled plant (DCP) in a plane XOZ can be defined with following system of

differential equations [1]

V=g'n)(;

= (5) - 5

x=V-cos't;
z=V.smmY¥,

where V is a velocity of DCP;

g is a gravity force;
Y is a trajectory rotation angle of DCP in the plane XOZ;
x and Z are coordinates of DCP in the plane XOZ.

Control vector of DCP

min < 1 g nmax

u= [nX,n] " <ny <y, m , @)

http://technomag.edu.ru/doc/280337.html 1



mailto:ksans@yandex.ru
mailto:emvoronov@mail.ru

where ny is a tangential g-load;
N is a normal g-load.
Initial conditions for system (1) are
1o =0, x(0) = z(0) =P(0) =0, V(0) =V} >0.
Integration of the first equation of system (1) will give following equation
VO=Vy+g ny -t

Using (4) when integrating the second equation of the system (1) will give
n-In0h+g-ny 1) n-ndy)

Hy Ry

P =

Let’s express time t in terms of the angle ¥ in (5)

[‘P-HX -0—7’1']11(V0))
e & +VO
g Ny

H(P)=——

Substituting (6) to the third equation of the system (1) will give
2( lP-HX +n-]n(V0 ) }
dx(\P) e & cos(‘P)
d¥ n-g

Let’s integrate (7) with zero initial conditions (3) and simplify the result

Pl gt @ 21y - cos(F) +n-sin(¥)) - 20,% - n
o(Py= (2r1y -cos('F) () - 274" -y
g (4nX +n )
Expression 2 *e08( L) +rsmi(T) in (8) can be transformed to the following one
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-cos(‘V)+ -sin('t)

\/471)( +n?

Let’s denote

n
\/4;1)( +n? \f4nX2+n2

COS

7
Sll’l ——
\/411)( +n 1’4nX2+n2 ©)

cos? (o) + sin’ (p)=1

Such denotation is admissible since , then

y4ny? +n” -(cos(p) - cos(P) +sin(g) -sin(F)).

Finally with the help of formula for cosine of angles difference with a glance of (9) we will obtain the

following expression
21y - cos(P) + n-sin(F) = f4ny +1” - cos(F — @) (10)

Substitution of (10) to (8) will give

2?11)(]
Voz-e( ) cos(W—g) 2Vt -ny (11)

- 2 T
g-\/4nX2+n2 g -(4ny™ +n”)

Equation for z(‘¥) can be obtained by analogy

()=

(2\?-;@{ ]
2 . 2
Vo“rer " Josin(F - @) N Vo“ m (12)

2 25 .
g-\/4nX2+n2 g (4ny”+n")

Let’s show that obtained equations (11) and (12) of planar motion of DCP are the same for a

z(Y) =

logarithmic spiral. As known, the logarithmic spiral in the plane XOZ is described by the following system

x=a-e” - C0S8 O,

z=a -ebg .81ng.

(13)

Denoting by
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P 2n Wy n Vol - n
a= 02 =, = U ey S = (14)
gfanan? T gl en?y T g-(dny® 4’y
we can get following system from equations (11) and (12)
x(Py=a-e’T -cos(¥ - @) +c,,
(15)

z(P)=a-e" sin(¥ - ) +c,,

which are equations of logarithmic spiral turned by the angle ¢ and shifted along the axis OX by the value c

C,.,C } ) . - .
and along the axis OZ by the value cy, where [ *7 7Y 1 are coordinates of the spiral origin (see fig. 1). Angle

@ can be found from (9)

: 2 1
@ = arcsin L |=arceos| ——L__ |= arctg(—] (16)
\’4nX2+n2 \/4nX2+n2 b

Z _
'! e ~1
= = -~ H
f’ \ 1"’1 - 3
/ \ p # :
A \_r‘ g i
/ A\ "‘1/5 ;
i TR (', !
i |IC i
iz A" N /
~ i | F {
E - \‘.L_‘ | \ l_‘d' j‘
il ey /
-
a \ /
b1 #
N\ 4

Fig. 1. Two turns of logarithmic spiral turned by the angle ¢
and shifted along the axis OX by the value ¢, and along the axis OZ

by the value c, relative to the spiral origin
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Hereby, planar motion of DCP described by system of differential equations (1) with initial conditions
(3) and controls (2) constant on a considered time interval gives a path segment described by logarithmic
spiral (15), see fig. 2.

In the case of non-zero initial conditions (3) carryover of coordinate origin to the current position and
rotation of axis by the current trajectory rotation angle of DCP can be performed.

As a result there can be presented an algorithm of logarithmic spiral approximation of planar motion
path segment of DCP [2].

Determination of current state x (ts) of DCP at an instant time t

X)) =V, Yio x5 2]

Fig. 2. Left: one turn of path segment is a distance of acceleration (ny > 0);

right: one turn of path segment is a stopping segment (nx < 0)

Load of DCP state at a previous instant time ty;

X)) = [Vieot: ¥hmts %15 241 |-

Evaluation of current tangential g-load of DCP on the basis of (4) by the following equation

V) =V 1)
) Gt v

Evaluation of current normal g-load of DCP on the basis of (5) by the following equation
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() -ny ()
lng'nX(tk)'(tk_tk—l)—'_Vk—l . (18)
Via

n(ty) =

Formulas (17) and (18) define vector of control parameters of DCP [nX (), n(tk)] at the time

interval [tk—l’ L ] Requirement of consistency of control parameters during the time interval can be abide

by the duration decrease of this time interval.

Path segment of the planar motion of DCP at each time interval [rk—l % tk] can be approximated by
the section of logarithmic spiral by formulas (14) — (16).
The main advantage of use of logarithmic spiral approximation of the planar motion of DCP with

dynamics (1) is analytic description without need of solution of differential equations.
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Description of dynamically controlled object flat trajectory with piecewise constant plots of control was
obtained with use of logarithmic spiral plot. Examples of the segments of acceleration and deceleration with
fixed values of normal and tangent overloads were included in the article. The usage of this approximation
method for models moving along the flat trajectories allows to substitute system of differential equations with
analytical dependences. That technique leads to significant reduce in trajectory creation time.
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