МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 621.311.6

Анализ маршрутов производства солнечных элементов типа cigs

10, сентябрь 2012

Гарифулина М.Р.

Научный руководитель: к.т.н., доцент Макарчук В.В. МГТУ им. Н.Э.Баумана, Москва, Россия

МГТУ им. Н.Э. Баумана mariamgarifulina@gmail.com

Введение

Солнечные батареи преобразовывают энергию излучения в электрическую энергию. Это преобразование, которое присутствует в некоторых полупроводниках, называют фотовольтанический эффект и первым был исследован Беккерелем в 1839 году. Солнечные батареи, изготовленные ИЗ пластины кристаллического поликристаллического кремния, сегодня являются доминирующей коммерческого рынка. Солнечные батареи, состоящие из тонких пленок полупроводника, - это другая технология с высоким потенциалом. Одна из таких тонкоплёночных технологий основана на сочетании таких элементов как медь, индий, галлий и селений, обозначающаяся Cu(In, Ga)Se2 или (CIGS). Существует следующие преимущества тонкопленочной технологии:

- Низкий расход материала;
- Высокая производительность,
- Долгий срок службы (в следствие того, что они не деградируют со временем как кремниевые элементы солнечных батарей) которые делают данные солнечные батареи экономически конкурентоспособными.

Структура элемента солнечных батарей типа CIGS

CIGS элемент солнечных батарей создается из основе натриево-кальциево-силикатного стекла, контакт к тыльной поверхности из молибдена, легко абсорбирующего слоя, состоящего из Cu(In, Ga)Se2, буферный слой сульфида кадмия (CdS) или Zn(O,S), тонкого слоя высокого сопротивления оксид цинка (ZnO) и прозрачный контакт к передней поверхности алюминий, легируемый оксидом цинка (ZnO:Al) (Рисунок 1).

Рис. 1 – Строение элемента солнечных батарей (1. ZnO:Al, 2. Буферный слой, 3. Cu(In, Ga)Se2, 4. Mo, 5. Подложка)

Подложка выполнена из натриево-кальциево-силикатного стекла. Буферный слой выполнены из сульфида кадмия.

Пошаговое производство солнечных модулей типа CIGS

Важным преимуществом тонкопленочных солнечных батарей является создания интегрированного последовательного соединения между соседними ячейками благодаря трем простым и автоматическим процессам, которые описаны на рисунке 2. Процесс, показанный на данном рисунке является одним из применяемым в Центре применения солнечной энергии и энергии воды (ZSW) и также в Würth Solar, которые осуществляют эксклюзивный процесс осаждения на одной линии для всех слоев кроме CdS – слоя.

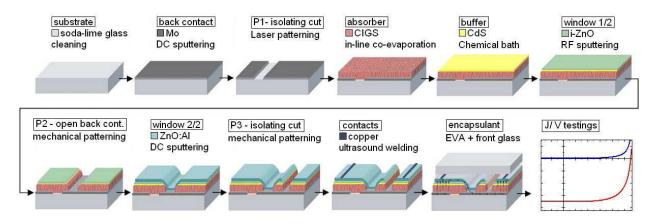


Рис. 2 – Пошаговое производство солнечных модулей в ZSW и Würth Solar [1]

Подложка. Самая распространённая подложка — натриево-силикатное стекло около 3мм толщиной и с областью 120х60см2. Функция подложки не лимитирована только механической поддержкой солнечной ячейкой, но также присутствие натрия в стеклянной подложки нашло применение в улучшении электрических свойств слоя абсорбера. Из-за относительно высоких температур (около 550) последующего процесса осаждения использование гибких подложек в действительности лимитированы полиимидом и фольгой нержавеющей стали или титаном.

Выходной контакт обычно выполнен из тонкого слоя молибдена (Мо), который используется из-за своего низкого контактного удельного сопротивления (рс $\sim 0.08 \cdot \text{ cm}^2$) поверхности Mo/CIGS. Типичной технологией осаждения для этого слоя является магнетронное распыление постоянного тока [2]. Это показывает, что распыление слоев при высоким давлении аргона выполняется до напряжения растяжения и хорошо скрепляется со стеклом, но они имеют высокое уделььное сопротивление. распыление при низкой давлении аргона, в отличие от предыдущего, выполняется до напряжения сжатия и имеет низкое удельное сопротивление, но плохо скрепляется со стеклом. Поэтому существует главная причина осаждать два слоя молибдена: первый с хорошей адгезией, и второй с низким удельным сопротивлением (р ~ 40мкОм см). Для улучшения термальной диффузии натрия и стеклянной подложки в верхний слоя абсорбера, около 10% кислорода включено в слой молибдена. Это возникает самостоятельно при использовании высокочастотном диодным распылении, но не при использовании магнетронного распыления. Оптимальное расстояние между антикатодом и подложкой - 5 см для того, чтобы получить зерна размером 40нм и показать рентгеновский дифракционный пик (110), который является обыкновенным при выращивании молибдена при комнатной температуре.

Слой CIGS. Технология осаждения базируется на так называемом трехстадийном процессе, который включает в себя соиспарение в вакууме чистых, беспримесных элементов из различных источников в три шага. Первый шаг – осаждение слоя (In, Ga)Se2 в размере 10% от конечного ожидаемого количества на молибден, покрывающий стекло, подогретое до температуры 260. Далее подложка нагревается до 565 до перенасыщения селеном, чтобы избежать испарения индия и галлия, осажденные на данном шаге. Когда температура становится стабильной, происходит осаждение слоя CuSe2 и данный слой немедленно реагирует с предыдущим слоем для образования Cu(In,Ga)Se2, и после расход индия и галлия до того, как не будет достигнуто желаемое количество CuSe2. Третий шаг обеспечивает более чем 90% от требуемого (In, Ga)Se2 для достижения общей доли Cu/(In, Ga) около 0,9 (Cu обедненный). После охлаждения подложки до 350°, потом селена останавливают и процесс заканчивается.

Кроме существующего трехстадийного процесса разрабатываются другие методы, содержащие стадийные цепочки или различные виды осаждения как электроннолучевое испарение метала, следующее за селенизацией при околоатмосферном давлении или электрохимическим осаждением.

Буферный слой. Одним из более спорных пунктов изучения солнечной батареи CIGS является рольи и химия так называемого буферного слоя, который обычно формируется с помощью химического осаждения (chemical bath deposition - CBD), - тонкий слой сульфида кадмия (CdS, 50нм). По исследованиям Орселя [36] ролья буфферного слоя заключается в предотвращении диффузии ионов алюминия во время процесса распыления прозрачного переднего контакта. ZnO:Al.

Прозрачный передний слой обычно состоит из двух слоев: тонкого (35-100нм) слоя чистого оксида цинка (i-ZnO) и толстого (300-1000нм) слоя оксида цинка, легированного алюминием (ZnI:Al или ZAO) с 2%-ным содержанием Al. Оба слоя обычно осаждаются в помощью магнетронного распыления.

Средняя производительность общей области солнечных модулей, произведенных благодаря методу, описанному выше, в Würth Solar, около 10,5%.

Заключение

В данной работе был рассмотрен метод производства элементов солнечных батарей типа CIGS. Данные метод был специально разработан для массового производства. Эффективность солнечных батарей, полученных по производственной цепочке, представленной выше, составляет 10,5%[1]. Данный результат показывает значительно отличается от максимальной производительности солнечных батарей данного типа. Однако данная производственная линия позволяет изготовлять солнечные батареи типа CIGS быстрее и дешевле.

Литература

- 1. E. Sovernigo, Deposition, characterization and optimization of the i-ZNO/ZAO layer system for new high efficiency Cu(In,Ga)Se₂ solar cells, Dissertation 2007.
- 2. Jinwoo Lee, Metastability of copper indium gallium diselenide polycrystalline thin film solar cell devices, Dissertation, 2008.