МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038

УДК 303.094.7

Моделирование колебаний упругой балки в несжимаемом нестационарном потоке

12, декабрь 2012

Дергачев С.А.

Студент, кафедра "Аэрокосмические системы"

Научный руководитель: Щеглов Г.А., к.ф-м.н., профессор кафедры "Аэрокосмические системы"

> МГТУ им. Н.Э. Баумана sadergachev@mail.ru

Задачи гидроупругости представляют большой теоретический и практический интерес. В данной работе предлагается метод решения некоторых частных задач, использующий мощный коммерческий пакет MSC Adams и внешний модуль моделирующий нестационарное гидродинамическое обтекание несжимаемой жидкостью деформируемого подвижного тела.

1. ПОСТАНОВКА ЗАДАЧИ

Плоскопараллельный поток несжимаемой среды с плотностью ρ_{∞} , имеющий постоянную скорость \vec{V}_{∞} , обтекает профиль эллиптической формы большого удлинения. Данное движение среды начинается в момент времени t_0 .

Рис. 1. Расчетная схема

Рассматривается балочная модель профиля: нестационарную гидродинамическую нагрузку q(s,t), воспринимает упругая ось профиля, которая работает на изгиб как балка длиной L, имеющая постоянную по длине изгибную жесткость *EJ* и погонную массу ρ . Рассматриваются прогибы упругой оси u(s,t). Профиль деформируется вместе с упругой осью таким образом, что выполняется гипотеза «плоских сечений».

Профиль *b* закреплен на двух упругих опорах одинаковой жесткости *C*, которые крепятся к упругой оси на идеальных шарнирах (см. рис. 1). Опоры установлены на краях упругой оси $s_1 = 0$ и $s_2 = l$.

Постановка связанной задачи гидроупругости включает динамические уравнения поперечных колебаний упругой оси вшитые в MSC Adams с соответствующими граничными условиями, уравнение неразрывности $div\vec{V} = 0$, уравнение Навье-Стокса с граничными условиями на бесконечности

$$\lim_{r \to \infty} \vec{V}(\vec{r},t) = \vec{V}_{\infty} = const, \lim_{r \to \infty} p(\vec{r},t) = p_{\infty} = const$$
и на профиле *b*.
$$\vec{V}(\vec{r}_{K},t) = \vec{V}_{K}(\vec{r}_{K},t),$$

где $\vec{V}(\vec{r}_K, t)$ – скорость среды, $\vec{V}_K(\vec{r}_K, t)$ – скорость движения точки \vec{r}_K профиля.

При описании течения используется вихревой лагранжев подход, при котором уравнение неразрывности и граничное условие на бесконечности выполняются автоматически. Рассматривается эволюция завихренности $\vec{\Omega} = rot \vec{V}$, вектор которой для плоскопараллельного течения направлен перпендикулярно плоскости потока (единичный орт \vec{k}) и имеет модуль $|\vec{\Omega}| = \Omega$. Считается, что завихренность сосредоточена в ограниченной области вихревого следа σ , что позволяет восстановить поле скорости по закону Био-Савара:

$$\vec{V}(\vec{r}) = \vec{V}_{\infty} + \iint_{\sigma} \vec{Q} \left(\vec{r} - \vec{\xi}\right) \cdot \Omega(\vec{\xi}) dS_{\xi}, \qquad \vec{Q} \left(\vec{r} - \vec{\xi}\right) = \frac{1}{2\pi} \frac{\vec{k} \times \left(\vec{r} - \vec{\xi}\right)}{|\vec{r} - \vec{\xi}|^2} f\left(\vec{r} - \vec{\xi}, \varepsilon\right),$$

где $f(\vec{r} - \vec{\xi}, \varepsilon)$ - сглаживающая функция, обеспечивающая нулевую скорость при $\vec{r} - \vec{\xi} \to 0$, ε - радиус сглаживания.

Уравнение Навье-Стокса преобразуется в уравнение движения завихренности по траекториям векторного поля $\vec{V} + \vec{W}$:

$$\frac{\partial \vec{\Omega}}{\partial t} = rot \left(\left(\vec{V} + \vec{W} \right) \times \vec{\Omega} \right)$$
(1)
где $\vec{W} = -\nu \frac{\nabla \Omega}{\Omega}$ - диффузионная скорость

Граничное условие на профиле в соответствии с гипотезой Лайтхилла обеспечивается процессом генерации завихренности [2,8]:

$$\frac{d}{dt}\Omega(\vec{r}_{K},t) = J_{t}(\vec{r}_{K},t), (2)$$

где J_t - поток завихренности.

Заданы начальные условия $Y_0(t_C) = 0$, $u(x,t_C) = 0$; $\dot{u}(x,t_C) = 0$.

2. МЕТОД РЕШЕНИЯ.

При дискретизации задачи упругая ось балки разбивается на участки, как показано на рис. 2. Массы участков приводятся к узлам.

Рис. 2. Дискретизация расчетной схемы

Балочно-массовая модель профиля решается в пакете MSC Adams.

При дискретизации уравнений движения среды вихревой след аппроксимируется N дискретными вихревыми элементами (далее ВЭ) – вихрями Рэнкина. Параметрами *i*-го ВЭ являются маркер $\vec{r_i}$ (радиус-вектор центра в системе координат *OXY*) и интенсивность Γ_i . Скорость среды в точке с радиус-вектором \vec{r} вычисляется по известным параметрам ВЭ и скорости набегающего потока как:

$$ec{V}(ec{r},t) \!=\! ec{V_{\infty}} + \sum_{i=1}^N ec{Q}(ec{r}-ec{r}_i)\Gamma_i$$

В рассматриваемой задаче вязкость среды считается малой и, в соответствии с подходом Прандтля, эффекты вязкости учитываются только как причина генерации завихренности в тонком пристеночном слое около профиля. Движение ВЭ происходит без учета вязкости (с нулевой диффузионной скоростью $\vec{W} = 0$) и описывается системой дифференциальных уравнений:

$$\frac{d\vec{r}_i}{dt} = \vec{V}(\vec{r}_i, t), \ \frac{d\Gamma_i}{dt} = 0, \ i = 1, \dots N$$
(3)

Процесс генерации завихренности моделируется рождением новых ВЭ ($j = 1,...,N_K$) на каждом временном шаге расчета. Маркеры новых ВЭ (радиус-вектор \vec{r}_{K_j} в неподвижной системе координат) задаются на панелях, аппроксимирующих контур профиля *b* (см. рис.2). Влияние диффузионной скорости около профиля учитывает заданное а'priori расстояние $\Delta = \vec{W}_K \Delta t = const$ на которое точка рождения вихревого элемента отстоит от панели. При таком подходе интенсивности Γ_j новых ВЭ вычисляются путем решения системы уравнений для условий непротекания в контрольных точках панелей совместно с уравнением баланса циркуляции с использованием регуляризирующей переменной.

 $\left[\nu\right]\left\{\Gamma\right\} = \left\{V_n\right\}, (4)$

где v- влияние вихря на скорость в заданной контрольной точке, V_n нормальная составляющая скорости в контрольных точках. Для нахождения давления в точке \vec{r} используется аналог интеграла Коши-Лагранжа.

Алгоритм подпрограммы расчета гидродинамических нагрузок методом вихревых элементов рассмотрен более подробно в работе [1]. Общий алгоритм решения связанной задачи гидроупругости (рис.3), описанный в настоящей работе отличается тем, что основной является не гидродинамическая подсистема, а подсистема решения задачи динамики конструкции, реализованная в пакете MSC ADAMS. Поскольку шаг интегрирования уравнений динамики контрукций Λт менше шага интегрирования уравнений движения вихревых элементов Δt , для сопряжения подсистем используется специально разработанная программа связи, в запросу из ADAMS производится линейная интерполяция которой ПО гидродинамических нагрузок между двумя шагами интегрирования t и t+ Δt .

Рис.3. Схема расчета

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Для тестирования нового алгоритма проводилось исследование на модельной задаче с безразмерными параметрами: $|\vec{V}_{\infty}| = 6,2$, $p_{\infty} = 1,0$, $\rho_{\infty} = 1,0$, L = 8,7, $EJ = 1,0 \cdot 10^4$, $m_i = 11,55$, $J_i = 5$, C = 1000,0, $\varepsilon = 0,088$, $\Delta = 0,001$, $\Delta t = 0,005$, $\Delta \tau = \Delta t/5$, $N_K = 100$, удлинение профиля соответствует 12.

Рис.4 Результаты расчетов в моменты (0.5 с, 1 с, 1.5 с, 30 с)

Приведем графики положения по оси ОХ верхней, средней и нижней точки балки.(Рис.5-7) А также силы реакций пружин.(Рис.8,9)

Рис.5. График координаты Х верхней точки балки

Рис.6 График координаты Х средней точки балки

Рис.7. График координаты Х нижней точки балки

Рис.8. График координаты силы реакции верхней пружины

Рис.9. График координаты силы реакции нижней пружины

4. ВЫВОД.

В данной работе представлен новый алгоритм расчета связанных задач гидроупругости методом вихревых элементов с использованием средств коммерческого пакета MSC ADAMS. Приведенные результаты численного моделирования показывают устойчивость счета и стабильность работы. Созданные позволяют программные модули исследовании использовать при задач гидроупругости богатые возможности пакета ADAMS. Работа выполнена при поддержке компетенц-центра MSC ADAMS МГТУ им. Н.Э. Баумана.

Список использованной литературы:

1. Щеглов Г.А. Исследование динамики опор упругого элемента, выдвигаемого в плоскопараллельный поток // Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение». – 2008. – Спец.выпуск – С.48-58.