МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 621.382

Оценка влияния толщины маскирующего покрытия шаблона на его литографические возможности

Благова С.В., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Проектирование и технология производства электронной аппаратуры»

> Научный руководитель: Макарчук В.В.,к.т.н., доцент кафедры Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана <u>shakhnov@iu4.bmstu.ru</u>

Введение

Процесс производства полупроводниковых приборов требует использования точного оборудования для выполнения операций. Основополагающим этапом, влияющим на точность и минимальную разрешающую способность, является технологическая операция литографии [1]. В свою очередь, многие характеристики литографического процесса зависят от применяемого шаблона, который выполняет две основные функции: является носителем информации о топологии СБИС и основным инструментом для производства интегральной схемы. Выполняя первую функцию, шаблон содержит весь объем информации, требуемой для формирования микроизображения. В качестве инструмента для производства СБИС его можно рассматривать как пространственный модулятор падающего светового потока, экранирующий часть света [2].

Изготовление интегральных микросхем производится последовательным формированием изображений. Для этого необходим комплект шаблонов, на каждом из которых содержится несколько различных микрорисунков. Каждый рисунок соответствует топологии одного слоя микросхемы.

К техническим характеристикам шаблонов относятся: размер рабочего поля; допустимая плотность дефектов; точность выполнения размеров элементов по всему полю изображения и их взаиморасположения; точность воспроизведения геометрической конфигурации элементов (характеризует резкость края контура, ограничивающего элемент); износостойкость; эксплуатационная надежность и стабильность параметров во времени [2].

Существует несколько видов шаблонов, однако далее речь будет об односторонних шаблонах с маской хрома и его защитой в виде тонкой пелликловой мембраны.

В общем случае конструкция шаблона содержит кварцевое прозрачное основание, на котором нанесено маскирующее покрытие. Кварц имеет малый коэффициент термического расширения, что способствует более стабильному поведению шаблона во время экспонирования.

На технологическом поле шаблона не допускаются макродефекты, видимые невооруженным глазом:

- загрязнения (пятна, разводы, пылинки) не удаляемые кисточкой с мягким ворсом;

- царапины маскирующего слоя;

- сколы и царапины на обеих сторонах кварца в пределах рабочего поля;

- трещины кварца на обеих сторонах по всей поверхности заготовки.

Шаблоны с нулевыми или некритичными дефектами – ключевое требование на современном передовом субмикронном производственном предприятии. Для шаблонов, минимальная ширина линии на которых приближается к *300 нм* диапазону, требования к дефектам ужесточаются до размеров менее *100 нм*.

Для поддержания чистоты поверхности шаблона, а также во избежание возникновения дефектов, к нему со стороны слоя хрома к специальной металлической рамке (обычно из анодированного алюминия) прикрепляется тонкая, оптически прозрачная мембрана, называемая пелликлом, которая герметично изолирует поверхность шаблона и защищает ее от находящихся в воздухе частиц пыли и других форм загрязнений. [3]. Указанная конструкция показана на рисунке 1.

1 – тонкая (≈1 мкм) полимерная пленка, прикрепленная к алюминиевой рамке,

- 2 клейкое вещество, крепящее мембрану к рамке,
- 3 рамка из анодированного алюминия,

4 – клей, предотвращающий попадание частиц материала рамки на поверхность шаблона,

5 – клей, крепящий всю конструкцию к шаблону.

Рис. 1. Структура шаблона с пелликлом

В качестве материала для пленки пелликла используется полимер с нитроцеллюлозой. Обычно нитроцеллюлозная мембрана используется, когда в качестве экспонирующего излучения применяется *g*-линия излучения ртути (405 нм), а модифицированная целлюлозная мембрана (ацетат целлюлозы) - для *i*-линии излучения ртути (*365 нм*) [3].

Качество маскирующих покрытий и прозрачных оснований шаблонов практически достигло своего предела. Дальнейшее их повышение возможно только за счет совершенствования конструкции самого шаблона. В частности, чтобы уменьшить интерференцию в толстом маскирующем слое хрома, производители заготовок для шаблонов стали уменьшать их толщину.

Однако, по мере сокращения толщины слоя хрома наблюдается уменьшение оптической плотности покрытия – меры непрозрачности слоя и его отражательной способности – величины, характеризующей способность границы раздела сред отражать падающий на нее поток электромагнитного излучения [4], что может негативно сказаться на производственном процессе и качестве получаемых СБИС.

В связи со сказанным возникает следующая задача: можно ли использовать новые шаблоны с меньшей толщиной маскирующего покрытия при проведении литографических операций на проекционных установках (степперах), использующих в качестве источника экспонирующего излучения ртутную лампу высокого давления с длиной волны $\lambda = 365$ нм).

Установка NanoSEM 3D (CD-SEM)

В качестве инструмента для измерения линейных размеров получающихся после литографии элементов на пластине использовалась измерительная установка NanoSEM 3D (CD-SEM) (рис. 2).

Рис. 2. Установка NanoSEM 3D (CD-SEM)

Основные метрологические характеристики установки представлены в таблице 1.

Таблица 1

Основные метрологические характеристики установки NanoSEM 3D (CD-SEM)

Наименование характеристики	Значение
Диапазон измерений по осям X и Y, мкм (не менее)	0 - 10
Пределы допускаемой относительной погрешности	
измерений линейных размеров по осям Х и Ү, нм	3

Для каждой пластины выполняется процедура загрузки пластины из кассеты на стол установки, выполнение требуемых измерений и выгрузки пластины в кассету. Измерительная программа содержит все инструкции, необходимые для выполнения измерений размеров различных топологических элементов на пластине.

При выполнении операций измерения необходимо: поставить кассету на один из портов (загрузочных модулей); вписать необходимую информацию в поля автоматически появившегося окна; выбрать необходимую измерительную программу для каждой пластины; после окончания измерений убрать кассету с пластинами [6].

После завершения процесса измерений пластины будут выгружены в те же самые слоты, а результаты измерений будут показаны в окне результатов.

Сравнительный анализ шаблонов

Для решения поставленной выше задачи был проведен эксперимент с двумя шаблонами: первый AR3 с толщиной слоя хрома 1050 +/- 50 Å и второй шаблон NTAR7 с толщиной хрома 730 +/- 50 Å. Изображения на двух шаблонах были одинаковые, однако размеры элементов на фотошаблоне с заготовкой типа NTAR7 увеличены по сравнению с AR3. Для измерения полученных изображений были выбраны горизонтальные и вертикальные «светлые» элементы фигур контроля линейных размеров (рис. 3) с номиналом на шаблонах близким к размеру 3 мкм, которые обеспечивают получение элементов с размером 0.6 мкм на кристалле.

Рис. 3. Вертикальные и горизонтальные фигуры контроля линейных размеров

Исходные параметры экспонирования для обоих шаблонов идентичны: начальная доза экспонирования $E = 100 \text{ мДж/см}^2$, шаг прироста дозы 2 мДж/см², конечная доза экспонирования $E = 218 \text{ мДж/см}^2$, фокус F = -0.2. Все результаты измерений, приведенные в таблицах 2-6 даны в мкм.

Результаты измерений размеров тестовых фигур для фотошаблона AR3 и NTAR7 представлены в таблицах 2 - 5.

Горизонтальные размеры тестовых элементов на кремниевой пластине при

1	0.488	16	0.583	31	0.662	46	0.686
2	0.488	17	0.589	32	0.659	47	0.687
3	0.486	18	0.604	33	0.654	48	0.699
4	0.496	19	0.606	34	0.657	49	0.689
5	0.499	20	0.609	35	0.664	50	0.714
6	0.551	21	0.613	36	0.656	51	0.695
7	0.546	22	0.612	37	0.664	52	0.717
8	0.549	23	0.620	38	0.663	53	0.693
9	0.554	24	0.622	39	0.681	54	0.709
10	0.557	25	0.634	40	0.661	55	0.709
11	0.564	26	0.626	41	0.672	56	0.725
12	0.558	27	0.635	42	0.668	57	0.707
13	0.570	28	0.641	43	0.683	58	0.721
14	0.574	29	0.643	44	0.682	59	0.713
15	0.575	30	0.642	45	0.678	60	0.728

экспонировании шаблоном AR3

Таблица 3

Вертикальные размеры тестовых элементов на кремниевой пластине при экспонировании

1	0.493	16	0.589	31	0.664	46	0.686
2	0.495	17	0.591	32	0.660	47	0.690
3	0.495	18	0.607	33	0.659	48	0.699
4	0.497	19	0.606	34	0.658	49	0.690
5	0.505	20	0.610	35	0.664	50	0.713
6	0.555	21	0.615	36	0.655	51	0.693
7	0.550	22	0.613	37	0.663	52	0.713
8	0.554	23	0.622	38	0.663	53	0.693
9	0.559	24	0.622	39	0.682	54	0.707
10	0.562	25	0.630	40	0.663	55	0.707
11	0.563	26	0.629	41	0.671	56	0.725
12	0.563	27	0.635	42	0.670	57	0.710
13	0.572	28	0.638	43	0.685	58	0.723
14	0.572	29	0.646	44	0.684	59	0.714
15	0.576	30	0.642	45	0.680	60	0.727

шаблоном AR3

Горизонтальные размеры тестовых элементов на кремниевой пластине при

1	0.498	16	0.601	31	0.676	46	0.731
2	0.497	17	0.604	32	0.678	47	0.717
3	0.502	18	0.622	33	0.670	48	0.710
4	0.508	19	0.622	34	0.668	49	0.702
5	0.513	20	0.623	35	0.681	50	0.718
6	0.561	21	0.624	36	0.674	51	0.721
7	0.561	22	0.628	37	0.685	52	0.710
8	0.562	23	0.630	38	0.678	53	0.715
9	0.567	24	0.628	39	0.692	54	0.721
10	0.570	25	0.644	40	0.684	55	0.717
11	0.575	26	0.639	41	0.691	56	0.724
12	0.576	27	0.654	42	0.690	57	0.717
13	0.581	28	0.646	43	0.709	58	0.737
14	0.584	29	0.654	44	0.710	59	0.746
15	0.590	30	0.657	45	0.703	60	0.736

экспонировании шаблоном NTAR7

Таблица 5

Вертикальные размеры тестовых элементов на кремниевой пластине при экспонировании

1	0.502	16	0.605	31	0.681	46	0.731
2	0.501	17	0.608	32	0.679	47	0.718
3	0.507	18	0.625	33	0.673	48	0.713
4	0.514	19	0.623	34	0.670	49	0.705
5	0.517	20	0.625	35	0.680	50	0.718
6	0.566	21	0.624	36	0.674	51	0.717
7	0.562	22	0.630	37	0.684	52	0.708
8	0.567	23	0.632	38	0.680	53	0.713
9	0.571	24	0.629	39	0.691	54	0.721
10	0.573	25	0.644	40	0.683	55	0.717
11	0.580	26	0.639	41	0.692	56	0.725
12	0.581	27	0.655	42	0.693	57	0.723
13	0.583	28	0.649	43	0.709	58	0.738
14	0.588	29	0.658	44	0.711	59	0.747
15	0.592	30	0.657	45	0.707	60	0.739

шаблоном NTAR7

По результатам измерений были построены графики для различных измерений для двух шаблонов, представленные на рисунке 4.

Рис. 4. Горизонтальные (а) и вертикальные (б) размеры тестовых элементов на пластине

Из графиков видно, что оба шаблона при одинаковых условиях экспонирования позволяют получить очень близкие значения размеров.

Второй эксперимент был выполнен для другой дозы экспонирования. Для анализа полученных изображений были использованы горизонтальные «светлые» элементы фигур контроля линейных размеров с номиналом на шаблонах 2.5 мкм, которые обеспечивают получение элементов с размером 0.5 мкм на кристалле. Исходные параметры экспонирования: начальная доза экспонирования $E = 50 \text{ мДж/см}^2$, шаг прироста дозы 2 мДж/см², конечная доза экспонирования $E = 84 \text{ мДж/см}^2$, фокус оставался прежним. Все измерения в таблицах представлены в мкм.

Результаты измерений размеров тестовых фигур для фотошаблона AR3 и NTAR7 представлены в таблицах 6 и 7.

Таблица б

Горизонтальные размеры тестовых элементов на кремниевой пластине при

1	0.489	10	0.606
2	0.506	11	0.618
3	0.553	12	0.633
4	0.560	13	0.636
5	0.564	14	0.635
6	0.569	15	0.641
7	0.561	16	0.646
8	0.589	17	0.650
9	0.598	18	0.654

экспонировании шаблоном AR3

Горизонтальные размеры тестовых элементов на кремниевой пластине при

1	0.501	10	0.604
2	0.508	11	0.629
3	0.563	12	0.651
4	0.562	13	0.650
5	0.571	14	0.639
6	0.581	15	0.652
7	0.569	16	0.656
8	0.586	17	0.652
9	0.599	18	0.666

экспонировании шаблоном NTAR7

По результатам измерений для обоих шаблонов был построен график, представленный на рисунке 5.

Рис. 5. Горизонтальные размеры тестовых элементов на пластине

Из графика видно, что два сравниваемых шаблона при одинаковых условиях позволяют получить практически одинаковые размеры тестовых элементов. Однако присутствует отклонение размеров для фотошаблона NTAR7 в большую сторону, это соответствует разнице в размерах на самих фотошаблонах (данные параметры можно проверить по техническому паспорту фотошаблонов).

Заключение

По результатам проведенных исследований можно сделать следующие выводы. Оба тестовых шаблона, отличающиеся только толщиной хромового покрытия, при одинаковых условиях процесса литографии позволяют получить очень близкие по размерам элементы.

Однако для фотошаблона NTAR7 присутствует отклонение размеров в большую сторону. Относительное смещение графиков по оси Y связано с тем, что размеры на фотошаблоне с заготовкой типа NTAR7 увеличены по сравнению с AR3.

Следовательно, можно сделать вывод, что переход на новые шаблоны с меньшей толщиной хромового покрытия не должен повлиять на качество литографических процессов, проводимых при использовании излучения с длиной волны $\lambda = 365$ *нм*.

Однако, для принятия окончательного решения о переходе на новый тип заготовок шаблонов (NTAR7) необходимо провести полный технологический цикл изготовления СБИС с использованием комплекта шаблонов с меньшей толщиной маскирующего покрытия.

Список литературы

- Конструкторско-технологическое проектирование электронных средств / под общ. редакцией В.А.Шахнова. – М.: Изд-во МГТУ им.Н.Э.Баумана, 2002. – 500 с.
- 2. Романова М.П. Бригаднов И.Ю. Учебное пособие. Фотошаблоны. 2006.
- 3. Kamberian Henry. Technology review. Pellicles. 2004.
- 4. Суровой Э.П. Еремеева Г.О. Теромпревращения наноразмерных слоев хрома 2011.
- 5. Chris Mack. Fundamental principles of optical lithography. Wiley, 2007. 515 c.
- 6. Михальцов Е.П. Методика выполнения измерений линейных размеров элементов топологии на поверхности кремниевой пластины. 19 с.