МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 531.383

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ИНЕРЦИАЛЬНОГО ИЗМЕРИТЕЛЬНОГО МОДУЛЯ НА МИКРОМЕХАНИЧЕСКИХ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТАХ

Репина Т.О., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Приборы и системы ориентации, стабилизации и навигации»

> **Колыхаев Д.Е.**, студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана

> Научный руководитель: Попов Г.В.,к.т.н., доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана <u>bauman@bmstu.ru</u>

Введение.

Микромеханические чувствительные элементы (микромеханические акселерометры, микромеханические гироскопы) принадлежат к классу инерциальных измерителей параметров линейных и угловых перемещений, выполненных по технологиям МЭМС (микроэлектромеханических систем) и образуют одно из подмножеств МСТ (микросистемной техники). Основным отличительным признаком микромеханических чувствительных элементов от ЧЭ инерциальных микродатчиков других типов (пьезогироскопы/микроакселерометры на поверхностно-акустических волнах и др.) является наличие механически подвижных элементов.

К достоинствам МГ можно отнести малые габариты (5-10 мм), возможность совместного изготовления микромеханической части гироскопа и электронной схемы обработки сигналов в едином технологическом цикле, низкая стоимость микромеханических чувствительных элементов.

Основными недостатками приборов данного типа являются - низкая точность измерения, нестабильность масштабного коэффициента, зашумленность выходного сигнала. Однако эти недостатки, по заверениям разработчиков, в ближайшие 2-3 года будут существенно уменьшены, а конструктивное исполнение в виде микрочипов переводит их в разряд компонентов электронных схем с характерными для них технологиями проектирования и изготовления.

Одним из перспективных направлений использования МА и МГ является их применение в качестве инерциальных датчиков для бесплатформенных систем ориентации

и навигации малоразмерных высокоманевренных ЛА, а также для решения ряда задач по их управлению с помощью специальных информационно- управляющих систем, выполняющих функции выработки команд управления.

данной В работе задается цель исследовать основные характеристики инерциального измерительного Atomic 6 DOF. Внимание модуля уделяется экспериментальному определению точностных параметров модуля: смещению нуля ДУСов и акселерометров, а так же определению времени готовности прибора, стабильности в запуске, стабильности от запуска к запуску.

Инерциальный измерительный модуль.

Инерциальный измерительный блок Atomic 6 DOF предназначен для измерения по трем взаимно ортогональным осям кажущегося ускорения и трех составляющих угловой скорости и преобразования полученных данных в 10-разрядный двоичный цифровой код структурная схема представлена на рис.1

Рис.1. Стуктурная схема измерительного модуля.

Состав инерциального измерительного модуля:

-трехосный акселерометр MMA 7261L с переключаемым диапазоном измерений ±1,5 g или ±6 g, разрешение в режиме измерения ±1,5 g - 0.00403 g/ ед. мл. разряда; в режиме ±6 g - 0.0161 g/ед. мл разряда.

-три одноосных датчика угловой скорости LISY300AL с диапазоном измерения до ±300 °/с, разрешение 0.977 °/сек ед. мл. разряда

-микроконтроллер Atmel ATMega 168 с тактовой частотой 10 МГц с 6 выделенными 10-битными АЦП каналами, считывающими показания датчиков

-устройство приема-передачи данных Xbee 1mw Chip Antenna.

-устройство для подключения к ПЭВМ Xbee Explorer USB

Модель погрешности трехосного акселерометра.

Акселерометр – прибор, измеряющий проекцию кажущегося ускорения на ось чувствительности. Большинство характеристик акселерометра определяют при испытаниях на развязанном основании, исключающем, по возможности, колебания и наклоны пола и стен лаборатории. В качестве входного воздействия используется рассчитанное ускорение силы тяжести в месте проведения испытаний.

Акселерометру придают разные ориентации относительно отвесной линии.

Измерения выходного сигнала соотносят с величиной ускорения силы тяжести.

Три акселерометра с номинально ортогональными осями чувствительности образуют триаду акселерометров. Получим простейшую линейную модель триады из следующих соображений:

Свяжем с кубом с взаимно ортогональными гранями систему координат ОХҮZ, как показано на рис. 2. Начало системы координат ОХҮZ расположим в центре подвеса акселерометра. Оси системы координат ортогональны и параллельны соответствующим граням куба. Оси чувствительности каждого из трех акселерометров номинально совпадают с осями системы координат ОХҮZ. Обозначим проекции кажущегося ускорения на оси куба $a_x a_y a_z$. При наличии малых относительных погрешностей коэффициента преобразований $A_{xx} A_{yy} A_{zz}$, каждый акселерометр измеряет проекцию кажущегося ускорения на свою ось чувствительности с соответствующими погрешностями (1+ A_{xx}) a_x , (1+ A_{yy}) a_y , (1+ A_{zz}) a_z .

При наличии малых относительных погрешностей выставки осей чувствительности каждый акселерометр дополнительно измеряет кажущиеся ускорения вдоль других осей трехгранника ОХҮΖ, связанного с кубом:

-по оси чувствительности акселерометра X имеем дополнительно проекции кажущегося ускорения A_{xz}a_y -A_{xy}a_z.

-по оси чувствительности акселерометра Y имеем дополнительно проекции кажущегося ускорения -A_{yz}a_x A_{yx}a_z.

-по оси чувствительности акселерометра Z имеем дополнительно проекции кажущегося ускорения A_{zy}a_x -A_{zx}a_y.

Каждый акселерометр имеет своё смещение нулевого сигнала $a_{x0} a_{y0} a_{z0}$, в общем случае зависящее от времени, температуры, и других внешних условий.

Каждый акселерометр имеет свою шумовую составляющую нулевого сигнала $\xi_{AX}(t), \xi_{AY}(t), \xi_{AZ}(t)$

Рис. 2. Модель погрешности триады акселерометров

Таким образом, измерения триадой акселерометров составляющих кажущегося ускорения вдоль осей блока ЧЭ можно представить в виде:

$$U_{AX} = K_{AX}[(1 + A_{XX})a_X + A_{XZ}a_Y - A_{XY}a_Z + a_{0X} + \xi_{AX}(t)]$$
$$U_{AY} = K_{AY}[-A_{YZ}a_X + (1 + A_{YY})a_Y + A_{YX}a_Z + a_{0Y} + \xi_{AY}(t)]$$
$$U_{AZ} = K_{AZ}[A_{ZY}a_X - A_{ZX}a_Y + (1 + A_{ZZ})a_Z + a_{0Z} + \xi_{AZ}(t)]$$

Где U_{AX} , U_{AY} , U_{AZ} - выходной сигнал акселерометров,

*K*_{AX}, *K*_{AY}, *K*_{AZ} -номинальные коэффициенты преобразования акселерометров по соответствующим осям

Калибровка триады акселерометров осуществляется путем измерения показаний каждого из трех акселерометров при их различных угловых положениях относительно отвесной линии.

В гироскопических системах с кардановым подвесом платформы сама конструкция прибора является стендом, так как позволяет осуществлять выставку платформы в разные угловые ориентации посредством датчиков команд и соответствующих приводов. В бескарданных системах калибровка осуществляется на наклонно-поворотных и/или оптических делительных головках.

Модель погрешностей датчиков угловой скорости.

Датчик угловой скорости – прибор, измеряющий проекцию вектора абсолютной угловой скорости на свою ось чувствительности. Большинство характеристик ДУСа определяют при испытаниях на поворотном столе с развязанным основанием, исключающем, по возможности, колебания и наклоны пола и стен лаборатории. В качестве входного воздействия используется заданная угловая скорость вращения поворотного стола.

ДУСу придают разные ориентации вектора угловой скорости поворотного стола. Измерения выходного сигнала соотносят с величиной угловой скорости.

Три ДУСа с номинально ортогональными осями чувствительности образуют триаду ДУС. Получим простейшую линейную модель триады из следующих соображений:

Свяжем с кубом с взаимно ортогональными гранями систему координат ОХҮZ, как показано на рис.3. Начало системы координат ОХҮZ расположим в центре подвеса акселерометра. Оси системы координат ортогональны и параллельны соответствующим граням куба. Оси чувствительности каждого из трех акселерометров номинально совпадают с осями системы координат ОХҮZ. Обозначим проекции угловой скорости куба на связанные с ним оси $\Omega_x \ \Omega_y \ \Omega_z$ и проекции кажущегося ускорения начала системы координат ОХҮZ на те же оси а_x а_y а_z

При наличии малых относительных погрешностей коэффициента преобразований $G_{xx} G_{yy} G_{zz}$, каждый ДУС измеряет проекцию вектора угловой скорости на свою ось чувствительности с соответствующими погрешностями (1+ G_{xx}) Ω_x , (1+ G_{yy}) Ω_y , (1+ G_{zz}) Ω_z .

При наличии малых относительных погрешностей выставки осей чувствительности каждый ДУС дополнительно измеряет угловую скорость вдоль других осей трехгранника ОХҮΖ, связанного с кубом:

-по оси чувствительности ДУС X имеем дополнительно проекции кажущегося ускорения $G_{xz}\Omega_y$ - $G_{xy}\Omega_z$.

-по оси чувствительности ДУС Y имеем дополнительно проекции кажущегося ускорения - $G_{vz}\Omega_x$ $G_{vx}\Omega_z$.

-по оси чувствительности ДУС Z имеем дополнительно проекции кажущегося ускорения $G_{zv}\Omega_x$ - $G_{zx}\Omega_v$.

Примем что при наличии линейных ускорений вдоль каждой из осей куба, показания ДУС изменяются пропорционально этим ускорениям.

Рис.3. Модель погрешности триады ДУС

Каждый ДУС имеет своё смещение нулевого сигнала Ω_{x0} Ω_{y0} Ω_{z0} , в общем случае зависящее от времени, температуры, и других внешних условий.

Молодежный научно-технический вестник ФС77-51038

Каждый акселерометр имеет свою шумовую составляющую нулевого сигнала $\xi_{GX}(t), \xi_{GY}(t), \xi_{GZ}(t)$

Таким образом, измерения триадой ДУС составляющих угловой скорости блока ЧЭ можно представить в виде:

$$\begin{split} U_{GX} &= K_{GX} [(1 + G_{XX})\Omega_X + G_{XZ}\Omega_Y - G_{XY}\Omega_Z + \Omega_{0X} + \xi_{GX}(t) + \\ &+ G_{XX}^A a_X + G_{XY}^A a_Y + G_{XZ}^A a_Z] \\ U_{GY} &= K_{GY} [-G_{YZ}\Omega_X + (1 + G_{YY})\Omega_Y + G_{YX}\Omega_Z + \Omega_{0Y} + \xi_{GY}(t) + \\ &+ G_{YX}^A a_X + G_{YY}^A a_Y + G_{YZ}^A a_Z] \\ U_{GZ} &= K_{GZ} [G_{ZY}\Omega_X - G_{ZX}\Omega_Y + (1 + G_{ZZ})\Omega_Z + \Omega_{0Z} + \xi_{GZ}(t) + \\ &+ G_{ZX}^A a_X + G_{ZY}^A a_Y + G_{ZZ}^A a_Z] \end{split}$$

Где:

 $U_{GX}U_{GY}U_{GZ}$ -Выходной код ДУСов по соответствующим осям $K_{GX}K_{GY}K_{GZ}$ -Масштабные коэффициенты ДУСов по соответствующим осям $\Omega_X\Omega_Y\Omega_Z$ - Проекции угловой скорости основания на оси трехгранника ОХҮΖ $a_Xa_Ya_Z$ - Проекции кажущегося ускорения основания на оси трехгранника ОХҮΖ $\Omega_{0X}\Omega_{0Y}\Omega_{0Z}$ -Смещение нуля соответствующего ДУС $\xi_{GX}(t)\xi_{GY}(t)\xi_{GZ}(t)$ -случайная составляющая измерения соответствующего ДУС $G_{XX}G_{YY}G_{ZZ}$ -Погрешности масштабного коэффициента соответствующего ДУС $G_{XZ}G_{XY}$ -Погрешности выставки оси чувствительности ДУС, относительно оси Х $G_{YZ}G_{YX}$ - Погрешности выставки оси чувствительности ДУС, относительно оси Y $G_{ZY}G_{ZX}$ - Погрешности выставки оси чувствительности ДУС, относительно оси Z $G_{XX}^AG_{XY}^AG_{XZ}^A$ - коэффициенты влияния кажущихся ускорений по осям X,Y,Z на ДУС X $G_{ZX}^AG_{ZY}^AG_{ZZ}^A$ -коэффициенты влияния кажущихся ускорений по осям X,Y,Z на ДУС X

Калибровка ДУС осуществляется путем измерения показаний каждого из трёх ДУС при различных тестовых воздействиях. В гироскопических системах с кардановым подвесом платформы тестовые воздействия может создать сама конструкция прибора путем выставки и вращения платформы в разных угловых ориентациях посредством датчиков команд и соответствующих приводов.

Заявленная производителем цена единицы младшего разряда составляет 0.977 ⁰/сек или 3517 ⁰/ч, что говорит о том, что ДУС не чувствует угловую скорость вращения Земли.

Это позволяет при калибровке ДУС среди тестовых воздействий не учитывать скорость вращения Земли.

Калибровка проводится в два этапа:

Этап 1. На невращающемся основании.

 $\Omega_x = \Omega_v = \Omega_z = 0.$

Тестовое воздействие в виде ускорения силы тяжести прикладывается последовательно в положительном и отрицательном направлении вдоль осей X,Y,Z. При этом осуществляется определение следующих погрешностей:

- смещение нуля соответствующего ДУСа - Ω_{x0} , Ω_{y0} , Ω_{z0} ,

- коэффициентов влияния кажущихся ускорений по осям X,Y,Z ДУСа Y - $G^A_{YX}G^A_{YZ}G^A_{YZ}$

- коэффициентов влияния кажущихся ускорений по осям X,Y,Z ДУСа Z - $G^A_{ZX}G^A_{ZY}G^A_{ZZ}$

Этап 2. На основании, вращающемся с постоянной скоростью вокруг вертикальной оси.

 $\Omega_x = \Omega_y = \Omega_z = 0.$

Тестовое воздействие в виде ускорения силы тяжести прикладывается последовательно в положительном и отрицательном направлении вдоль осей X,Y,Z. При этом осуществляется определение следующих погрешностей:

- смещение нуля соответствующего ДУСа - Ω_{x0} , Ω_{y0} , Ω_{z0} ,

-коэффициентов влияния кажущихся ускорений по осям X,Y,Z ДУСа X - $G^A_{XX}G^A_{XY}G^A_{XZ}$

- коэффициентов влияния кажущихся ускорений по осям X,Y,Z ДУСа Y - $G_{YX}^A G_{YY}^A G_{YZ}^A$ - коэффициентов влияния кажущихся ускорений по осям X,Y,Z ДУСа Z - $G_{ZX}^A G_{ZY}^A G_{ZZ}^A$

Экспериментальное определение параметров стабильности в запуске,

стабильности от запуска к запуску и времени готовности модуля в одной ориентации.

Для определения данных параметров проведем 8 запусков измерительного модуля в одной ориентации.

Стабильность в запуске – наибольшее из 8 запусков значение среднего квадратического отклонения от среднего арифметического в данном запуске.

Стабильность от запуска к запуску – среднее квадратическое отклонение из средних значений в 8 запусках от их среднего арифметического значения.

Время готовности – наибольшее из 8 запусков время вхождения в трубку (-σ,+ σ) относительно среднего в данном запуске.

Настройки прибора:

Диапазон измерений ±1,5 g

Молодежный научно-технический вестник ФС77-51038

Частота вывода данных 50 Гц

Измерения будем проводить 10 минут (30000 замеров)

С перерывом на 10 минут

Формат выходных данных:

0	498	544	701	529	520	492
1	494	547	698	528	521	492
2	496	543	696	528	521	492
3	496	543	700	528	521	492

Где первый столбец – счетчик измерения,

Второй – показания акселерометра по оси Х

Третий – показания акселерометра по оси У

Четвертый – показания акселерометра по оси Z

Пятый – показания ДУСа по оси Х

Шестой – показания ДУСа по оси Ү

Седьмой – показания ДУСа по оси Z

Обработку данных проведем в системе Matlab.

Полученные данные представлены в таблице 1:

Таблица 1

	Акселерометр						
№ опыта	Канал Х		Канал У		Канал Z		
	Среднее	СКО	Среднее	СКО	Среднее	СКО	
1	497,7	2,17	544,8	3,67	696	3,83	
2	497,6	2,17	544,9	3,5	696,2	4	
3	497,7	2,33	544,8	3,33	696,2	4,17	
4	497,6	2,33	544,8	3,33	696,2	3,83	
5	497,8	2,17	544,7	3,5	696,2	4	
6	497,8	2,33	544,8	3,17	696,2	3,83	
7	497,9	2,50	544,7	3,5	696,1	3,83	
8	497,8	2,33	544,7	3,33	696,2	4,17	
среднее по							
8 опытам	497,7375	2,29	544,775	3,41625	696,1625	3,9575	
время	0 c		0 c		0 c		

Определение времени готовности и среднеквадратического отклонения

готовности						
		·	ДУС		•	
	Канал Х		Канал Ү		Канал Z	
	Среднее	СКО	Среднее	СКО	Среднее	СКО
1	528,7	0,83	522,4	4	491,1	0,67
2	528,8	0,5	522,3	3	491	0,67
3	528,9	0,5	522,2	3,17	491	0,67
4	528,6	0,5	522,2	1,67	490,9	0,67
5	528,7	0,5	522,2	1,67	490,9	0,67
6	528,6	0,5	522,3	1,5	491	0,67
7	528,7	0,5	522,2	2,83	490,9	0,67
8	528,6	0,5	522,2	3,33	491	0,67
среднее по						
8 опытам	528,7	0,54125	522,25	2,65	490,975	0,67
время						
готовности	0 c		50 c		50 c	

Определение калибровочных констант.

Для определения данных параметров проведем 12 запусков измерительного модуля в различных ориентациях на поворотном столе, с неподвижным основанием и вращающемся со скоростью 150 ⁰/сек по и против часовой стрелки.

Настройки прибора:

-Диапазон измерений ±1,5 g

-Частота вывода данных 50 Гц

-Каждое измерение будем проводить 2 минуты (6000 замеров)

-Полученные данные представлены в таблице 2.

Масштабный коэффициент может быть определен как величина обратная разрешению

К_{акс}=1/0.0403=248,139 ед.мл.р/g

К_{ДУС}=1/0.977=1,023 ед.мл.р./[⁰/сек]

Воспользовавшись формулами для калибровки акселерометра из раздела 3 рассчитаем смещения нуля, погрешности невыставки, и масштабных коэффициентов акселерометра и занесем данные в таблицы 3,4:

Таблица 2

	A	кселероме	гр	ДУС			
No	Канал Х	Канал У	Канал Z	Канал Х	Канал Ү	Канал Z	
положения	Среднее	Среднее	Среднее	Среднее	Среднее	Среднее	
	Ед. мл.	Ед. мл.	Ед. мл.	Ед. мл.	Ед. мл.	Ед. мл.	
	разряда	разряда	разряда	разряда	разряда	разряда	
$+X+^{1}$	745,5	541,8	454,4	684,4	521,1	491	
+X-	745,6	541,8	454,6	373,4	523,2	490,9	
+X0	745,7	540,9	450,7	529	522,3	491	
-X0	247,1	538	454	528,8	521,9	490,9	
-Y+	491,4	294,9	457,8	530,7	682,7	489,3	
-Y-	491,6	294,9	457,7	527,1	361,1	492,3	
-Y0	494,9	294,7	450	528,9	522	490,8	
+Y0	495,6	780,4	459,2	528,8	521,9	490,8	
+Z+	492,8	543,7	696,4	523,2	520,1	655,6	
+Z-	491,1	543,8	696,6	534,2	523,6	325,7	
+Z0	497,7	544,7	696,2	528,7	522,2	490,1	
-Z0	498,7	532,3	207,8	528,8	521,8	490,7	

Таблица 3

Погрешности невыставки и масштабных коэффициентов акселерометра

g направлен по Х		g нап	равлен поҮ	g направлен по Z		
A _{xx}	0,022782	A _{xz}	-0,001435916	A _{yx}	0,025436221	
A _{yz}	-0,00595	A _{yy}	-0,003679629	A _{xy}	0,002051308	
A _{zy}	0,006769	A _{zx}	0,018872035	A _{zz}	0,001858903	

Таблица 4

Смещения нуля акселерометров, м/с²:

	a _{ox}	-0,62868	a _{ox}	-0,675025
--	-----------------	----------	-----------------	-----------

¹ +X+ - это обозначение положения + или - перед буквой обозначает направление ориентации оси относительно гравитационного поля Земли; Х, Ү, Z – обозначет какая ось направлена, 0, - или + обозначает направление угловой скорости поворота вокруг выбранной оси

http://sntbul.bmstu.ru/doc/637776.html

a _{oy}	1,106235	a _{oy}	1,029665
a _{oz}	-2,4039	a _{oz}	-2,31322

Так как смещение нуля рассчитывалось два раза по разным данным, близость полученных значений говорит о правильности результата.

Рассчитаем смещения нуля, погрешности невыставки, коэффициенты влияния кажущегося ускорения, и масштабных коэффициентов ДУСов и занесем данные в таблицы:

Таблица 5

Коэффициенты влияния кажущегося ускорения

G _{xx}	0,009946	G _{xy}	0,004973	G_{xz}	-0,00497
G _{yx}	0,019892	G _{yy}	0,004973	G_{yz}	0,019892
G _{zx}	0,004973	G _{zy}	0	G _{zz}	-0,02984

Таблица б

Получим смещения нуля, ⁰/с

$\Omega_{0\mathrm{x}}$	16,5113	$\Omega_{0\mathrm{x}}$	16,46245	$\Omega_{0\mathrm{x}}$	16,36475
$\Omega_{0\mathrm{y}}$	9,8677	Ω_{0y}	9,72115	Ω_{0y}	9,77
$\Omega_{0\mathrm{z}}$	-20,5659	Ω_{0z}	-20,7124	Ω_{0z}	-21,1032

Таблица 7

Погрешности невыставки и масштабных коэффициентов

Gxx	0,012823	Gxz	0,011724	Gxy	0,035823
Gyz	0,006839	Gyy	0,047344	Gyx	-0,0114
Gzy	0,000326	Gzy	0,00977	Gzz	0,074374

Проверим полученные результаты:

Сравним правую и левую часть равенства модели акселерометра подставив в правую часть экспериментальные данные а в левую полученные константы и входные воздействия

$$U_{AX} = K_{AX} [(1 + A_{XX})a_X + A_{XZ}a_Y - A_{XY}a_Z + a_{0X}]$$

745.5= 24,813 ((1+0,022782)*9,823-0.62868))+512 (512 добавляем потому что показания 0 в датчике начинаются не в 0 а в 512)

Получили 745,5 и 745,69

Молодежный научно-технический вестник ФС77-51038

 $U_{GX} = K_{GX}[(1 + G_{XX})\Omega_X + G_{XZ}\Omega_Y - G_{XY}\Omega_Z + \Omega_{0X} + G_{XX}^A a_X + G_{XY}^A a_Y + G_{XZ}^A a_Z]$ 684.4=1,023((1+0,012823)*150+16,4625+0,009946*9,823)+512 684,4 и 684,3587.

Соотнося рассчитанные и полученные значения можно сделать вывод в различии до первого знака после запятой единиц младшего разряда. Или различие в рассчитанном и полученном результатах $0,396 \text{ м/c}^2$ для акселерометра $0,977 \,^0$ /с для ДУСа. Данное различие можно объяснить тем, что модель погрешностей акселерометра и ДУС, включает в себя только члены линейно зависящие от входных воздействий.

Вывод.

В данной работе была рассмотрена конструкция и принцип работы инерциального измерительного модуля. Была сформулирована линейная модель погрешности чувствительных элементов в виде полинома, связывающего входное воздействие и выходной сигнал чувствительного элемента. Были экспериментально получены коэффициенты при членах этого полинома, и тем самым установлена однозначная зависимость между входными и выходными параметрами. Однако анализ этой модели был проведен в камеральном режиме - то есть обработка результатов после проведения измерений.

Список литературы

- 1. Распопов В.Я. Микромеханические приборы, Машиностроение, 2007г.
- 2. Н.Бабур, ДЖ. Шмидт Направления развития инерциальных датчиков // Гироскопия и навигация, 2000 г., №1.
- 3. В.Г. Пешехонов Гироскопы начала XXI века// Гироскопия и навигация, 2003г., №4.
- 4. ДокументациянаприборSparkFunElectronics2009URL.http://www.sparkfun.com/datasheets/Sensors/IMU/SFE-0012-DS-6DOFAtomic_v3.pdf
- 5. Салычев О.С. «Applied Inertial navigation: problems and solutions», МГТУ им. Н.Э. Баумана, 2004г.
- Матвеев В.В., Распопов В.Я. Основы построения инерциальных навигационных систем, ГНЦ РФ ОАО «ЦНИИ Электроприбор» 2009г., 280с.
- 7. Васечкин Ю.С. Лабораторные работы в среде Matlab, МГТУ им. Н.Э. Баумана, 2002г.