электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 629.05

Анализ качества регулирования в ИГС с коррекцией

Кальдин М.А., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Приборы и системы ориентации, стабилизации и навигации»

Научный руководитель: Кулешов А. В., к.т.н, доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана bauman@bmstu.ru

Точность индикаторного гиростабилизатора (ИГС) определяется статической ошибкой, величина которой зависит от коэффициента обратной связи канала стабилизации и возмущающих моментов, действующих по оси стабилизации, и динамической погрешностью, котрая определяется качеством регулирования. В различных случаях применения ИГС основной может быть как, статическая так и динамическая погрешность.

Для обеспечения малой статической погрешности необходимо увеличение коэффициента обратной связи канала стабилизации. При этом для получения достаточных запасов устойчивости по амплитуде и фазе необходимо введение корректирующего звена, что в свою очередь окажет влияние и на динамическую погрешность. Таким образом, основной задачей исследования является определение влияния параметров корректирующего звена на качество регулирования в ИГС.

Исследование качества регулирования проверено на примере ИГС со следующими параметрами:

- момент инерции ИГС по оси стабилизации: $J_0 = 3 \cdot 10^{-2}$ кг/м²;
- коэффициент демпфирования: $D\alpha = 2.5 \cdot 10^{-3}$ H⋅м⋅c/paд;
- коэффициент усиления канала стабилизации (коэффициента усиления в цепи отрицательной обратной связи): K = 407 Hm/pag;
 - частота собственных недемпфированных колебаний: $\omega_0 = 19 \; \Gamma$ ц.

Структурная схема ИГС представлена на рис. 1.

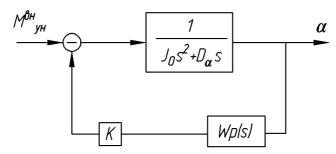


Рис. 1. Структурная схема ИГС

Структурная схема замкнутой скорректированной системы из двух звеньев, описывающих поведение платформы, охваченных отрицательной обратной связью, усилителя канала стабилизации и корректирующего устройства.

Передаточная функция регулятора имеет вид: $Wp(s) = \frac{T_1 s + 1}{T_2 s + 1}$. Тогда передаточная функция ИГС с коррекцией определяется выражением: $W(s) = \frac{K}{J_0 s^2 + D_\alpha s} \cdot \frac{T_1 s + 1}{T_2 s + 1}$. Начальные для анализа значения постоянных времени T_1 и T_2 выбираются исходя из следующих рекомендаций: частота среза скорректированной

 T_2 выбираются исходя из следующих рекомендаций: частота среза скорректированной системы должна находиться на амплитудной частотной характеристике (рис. 2) посередине между частотами $1/T_1$ и $1/T_2$, а соотношение между частотами $1/T_1$ и $1/T_2$ должно составлять приблизительно декаду. Для рассматриваемого примера постоянные времени T_1 и T_2 корректирующего звена, удовлетворяющие указанным рекомендациям могут быть выбраны следующими: $T_1 = 0.012$ с, $T_2 = 0.0012$ с.

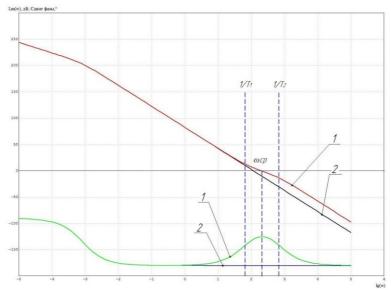


Рис. 2. Частотные характеристики скорректированной (1) и нескорректированной (2) системы

При этом, как видно на рис. 3, действительно получаем оптимальный наилучшее качество регулирования, обеспечивается близкое к оптимальному демпфирование, величина перерегулирования отсутствует ($\sigma = 0\%$), вид переходного процесса – апериодический, время переходного процесса близкое к минимальному ($t_{nn} = 0.05$ c).

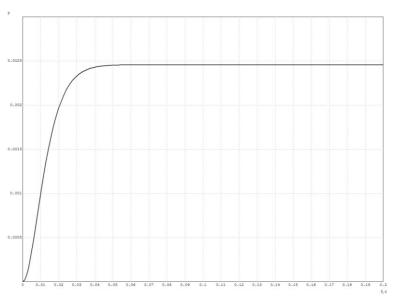


Рис. 3. Оптимальный вид переходного процесса

При таком выборе постоянных времени корректирующих звеньев можно считать, что влияние апериодического звена с постоянной времени T_2 на величину частоты среза разомкнутой системы, а следовательно и на переходной процесс минимально, и в данном случае им можно пренебречь. Тогда при малом демпфировании в двигателях стабилизации, имеющем место на практике, коэффициент затухания собственных колебаний скорректированной системы определяется по формуле (1).

$$\zeta = \frac{T_1}{2} \cdot \sqrt{\frac{K_p}{J_0}} \tag{1}$$

Для рассматриваемого примера $\xi = 0.707$, что соответствует оптимальному значению.

Изменение постоянных времени T_1 и T_2 оказывает влияние на качество регулирования в ИГС. Для анализа этого влияния необходимо рассмотреть следующие несколько вариантов.

1. Увеличение постоянной времени T_1

При увеличении постоянной времени T_I , то есть при уменьшении частоты среза дифференцирующего звена $1/T_I$, в соответствии с (1) увеличивается коэффициент затухания ξ и тогда при выбранных ранее начальных значениях постоянных времени T_I и T_2 следует ожидать, что переходной процесс остаётся апериодическим, а время переходного процесса увеличивается.

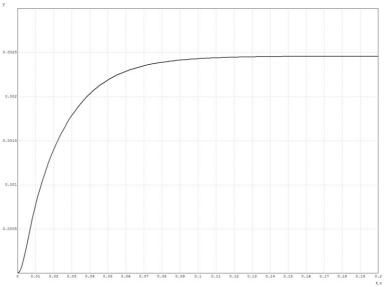


Рис. 4. Переходной процесс при увеличении T_1

Проведённое моделирование в среде «МВТУ 3.7» подтвердило данное утверждение. Так, например, при увеличении T_I на 40%, время переходного процесса увеличивается на 71% (рис. 4).

2. Уменьшение постоянной времени T_1

При уменьшении постоянной времени T_I то есть при увеличении частоты среза дифференцирующего звена $1/T_I$, коэффициент затухания ξ уменьшается, и при уменьшении ξ ниже значения 0.707 время переходного процесса увеличивается, а характер переходного процесса становится колебательным.

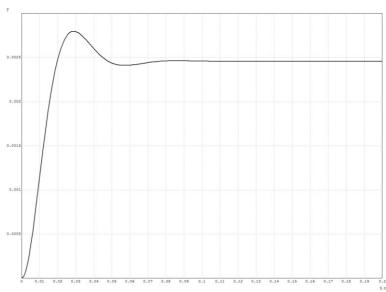


Рис. 5. Переходной процесс при уменьшении T_1

В результате моделирования в среде «МВТУ 3.7» было получено, что при уменьшении T_I на 33%, время переходного процесса увеличивается на 60%. При этом переходной процесс колебательный с перерегулированием $\sigma = 17$ (рис. 5).

3. Увеличение постоянной времени T_2

При увеличении постоянной времени T_2 частота среза интегрирующего звена $1/T_2$ уменьшается, тем самым уменьшается длительность дифференцирующего звена, то есть снижается эффективность регулятора. При этом следует ожидать уменьшения коэффициента затухания ξ , колебательного переходного процесса и увеличение его времени с ростом T_2 (рис. 6).

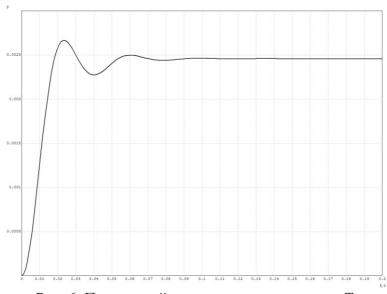


Рис. 6. Переходной процесс при увеличении T_2

Так в результате моделирования было получено, что при увеличении T_2 на 70%, время переходного процесса увеличивается на 64%. Эффект от увеличения T_2 во многом схож с уменьшением T_1 , так как снижается длительность работы дифференцирующего звена. При этом демпфирование в системе снижается, что увеличивает колебательность переходного процесса. Для выбранного изменения T_2 величина перерегулирования $\sigma = 10\%$.

4. Уменьшение постоянной времени T_2

При уменьшении постоянной времени T_2 частота среза интегрирующего звена растёт. Поскольку при выбранных начальных значениях постоянных времени T_1 и T_2 влиянием T_2 на переходной процесс мало и им можно пренебречь, то при уменьшении T_2 это влияние становится ещё меньше. Таким образом, время переходного процесса остаётся неизменным.

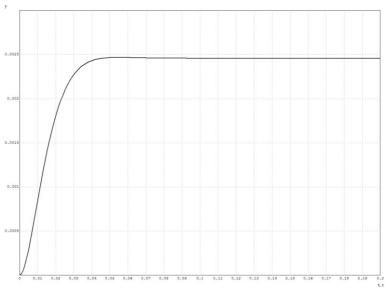


Рис. 7. Переходной процесс при уменьшении T_2

В результате моделирования было получено, что переходной процесс колебательный с небольшой величиной перерегулирования $\sigma = 1.2\%$ (рис. 7).

5. Увеличение постоянных времени T_1 и T_2

При увеличении постоянных времени T_1 и T_2 , при котором частоты среза дифференцирующего и интегрирующего звеньев уменьшаются, но их соотношение остаётся постоянным, растёт отрицательное влияние интегрирующего звена на переходной процесс.

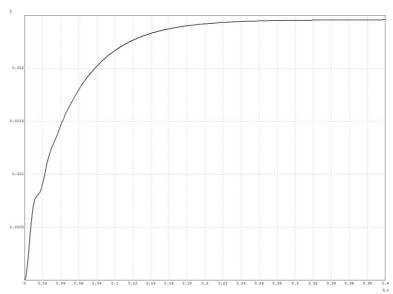
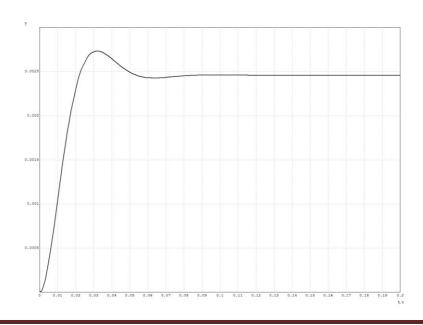



Рис. 8. Переходной процесс при увеличении T_1 и T_2

В результате моделирования было получено, что при увеличении T_1 и T_2 на 70%, время переходного процесса увеличивается на 89% (рис 8). Переходный процесс носит близкий к апериодическому характер, время которого увеличивается за счёт влияния интегрирующего звена.

6. Уменьшение постоянных времени T_1 и T_2

При уменьшении постоянных времени T_1 и T_2 влияние регулятора на частотные характеристики осуществляется на более высоких частотах. В этом случае влияние дифференцирующего звена на переходной процесс снижается, качество регулирования ухудшается. При уменьшении коэффициента затухания ξ увеличивается время переходного процесса.

Так в результате моделирования (рис.9) было получено, что при уменьшении T_1 на 33% и уменьшении T_2 на 66%, время переходного процесса увеличивается на 56%. Это схоже со случаем, когда уменьшалась только постоянная времени T_1 , то есть влияние дифференцирующего звена на частоте среза снижается, следовательно переходной процесс колебательный с величиной перерегулирования $\sigma = 12\%$.

7. Увеличение постоянной времени T_1 и уменьшение T_2

Увеличении постоянной времени T_1 и уменьшении T_2 приводит к расширению зоны действия дифференцирующего звена, а соответственно к росту демпфирования и коэффициента затухания, что неминуемо приводит к увеличению времени переходного процесса.

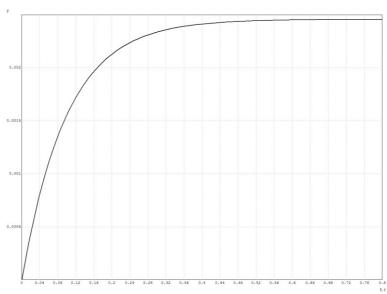


Рис. 10. Переходной процесс при увеличении T_1 и уменьшении T_2

В результате моделирования было получено, что при увеличении T_1 на 85% и уменьшении T_2 на 93%, время переходного процесса увеличивается на 90%. С увеличением демпфирования в системе переходной процесс остаётся апериодическим с большим временем переходного процесса (рис. 10).

8. Уменьшение постоянной времени T_1 и увеличение T_2

Уменьшении постоянной времени T_1 и увеличении T_2 приводит к сужению зоны действия дифференцирующего звена, а соответственно и снижению демпфирования в системе, что должно привести к увеличению колебательности системы и длительности переходного процесса.

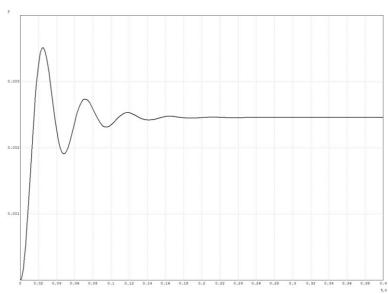


Рис. 11. Переходной процесс при уменьшении T_1 и увеличении T_2

В результате моделирования было получено, что при уменьшения T_1 на 33% и увеличении T_2 на 70%, время переходного процесса увеличивается на 81%, а при дальнейшем уменьшения T_1 и увеличении T_2 теряется эффект от применения корректирующего устройства. Переходной процесс колебательный с величиной перерегулирования $\sigma = 46\%$ (рис. 11).

Исходя из рассмотренных вариантов изменения постоянных времени T_1 и T_2 можно сделать вывод, что для получения близкого к оптимальному качества переходного процесса в ИГС следует придерживаться следующих рекомендаций:

- при выборе корректирующего звена для обеспечения требуемого коэффициента затухания (требуемого демпфирования в системе), в соответствии с формулой (1), можно воспользоваться выражением $T_1=2\cdot\zeta\cdot\sqrt{\frac{J_0}{K_p}}$;
- постоянную времени T_2 следует выбирать так, чтобы она отличалась от постоянной времени T_1 приблизительно на декаду, что исключит её влияние на переходной процесс;
- желательно, чтобы частота среза скорректированной системы находилась посередине между частотами $1/T_1$ и $1/T_2$, то есть соответствовала максимальному значению на фазовой характеристике системы (рис. 2).

При этом может быть обеспечен оптимальный переходной процесс без перерегулирования, с минимальным временем переходного процесса и максимальными запасами устойчивости по амплитуде и фазе на частотных характеристиках разомкнутой системы.

Список литературы

- 1. Бромберг П.В., Михалёв И.А., Никитин Е.А., Бауман В.А., Балашова А.А. Гироскопические системы. В 3 ч. Ч. 2. Гироскопические приборы и системы / ред. Д.С. Пельпора. Учебное пособие для вузов. М.: Высшая школа, 1971. 488 с.
- 2. Колосов Ю.А., Ляховецкий Ю.Г., Рахтеенко Е.Р. Гироскопические системы. Проектирование гироскопических систем. В 2 ч. Ч. 2. Гироскопические стабилизаторы / ред. Д.С. Пельпора. Учебное пособие для вузов. М.: Высшая школа, 1977. 223 с.
- 3. Солодовников В.В., Плотников В.Н., Яковлев А.В. Теория автоматического управления техническими системами. М.: Изд-во МГТУ им. Н.Э. Баумана, 1993. 492 с.