МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 53.04

Исследование эффекта Зеемана на образце паров кадмия

Мунин Е.Н., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Космические аппараты и ракеты-носители»

Научный руководитель: Скуйбин Б.Г., к.ф.-м.н, доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана <u>bauman@bmstu.ru</u>

В данной работе был исследован эффект Зеемана. Эффект Зеемана представляет собой расщепление линий и энергетических уровней атомов, молекул и кристаллов в магнитном поле. В данном случае в качестве ислледуемого образца выступало излучение, созаваемое парами кадмия.

Целью проведенного эксперимента была оценка величины магнетона Бора. Наблюдения проводились в случае нормального эффекта для длины волны 594 нм и в случае аномального эффекта для длины волны 450 нм.

Состав установки

В состав установки входят кадмиевая спектральная лампа, магнитная катушка, эталон Фабри-Перо для полученя интерференционной картины и количественного измерения расщепления спектральных линий. В качестве принимающего устройства выступает WEB-камера. Полученные результаты обрабатываются в приложении Motic-Cam.

Необходимо отметить тот факт, что благодаря точной настройке элементов установки, и параметров яркости изображения, удалось добится четких высококачественных снимков спектральных линий.

Характеристики WEB-камеры:

- Разрешение 800×600 пикс.;
- Скорость передачи информации 480 Мб/с;
- Частота съемки 30 кадров/с.

Нормальный эффект Зеемана

Для определения магнетона Бора первоначально необходимо получить величину разницы волновых чисел компонентов *а* и *b* спектральных линий:

$$\Delta \bar{\nu} = \frac{\delta}{2t\Delta}$$

Здесь $\delta = \frac{1}{4} [\delta^1_{ab} + \delta^2_{ab} + \delta^3_{ab} + \delta^4_{ab}]$, где

$$\begin{split} \delta^{1}_{ab} &= r^{2}_{1a} - r^{2}_{1b};\\ \delta^{2}_{ab} &= r^{2}_{2a} - r^{2}_{2b};\\ \delta^{3}_{ab} &= r^{2}_{3a} - r^{2}_{3b};\\ \delta^{4}_{ab} &= r^{2}_{4a} - r^{2}_{4b}; \end{split}$$

δ - средняя разность квадратов радиусов внешних и внутренних колец а и b соответственно одного порядка интерференции.

$$\begin{split} \Delta &= \frac{1}{4} \left[\Delta_a^{21} + \Delta_b^{21} + \Delta_a^{43} + \Delta_b^{21} \right], \text{где} \\ & \Delta_a^{21} = r_{2a}^2 - r_{1a}^2; \\ & \Delta_b^{21} = r_{2b}^2 - r_{1b}^2; \\ & \Delta_a^{43} = r_{4a}^2 - r_{3a}^2; \\ & \Delta_b^{43} = r_{4b}^2 - r_{3b}^2; \end{split}$$

 Δ - средняя разность квадратов внешних радиусов колец *a* и радиусов внутренних колец *b* соседних порядков. Необходимо отметить, что для данного значения напряжения, подаваемого на лампу и индукции магнитного поля катушки величины δ и Δ являются постоянными.

Далее запишем значение величину расщепления энергии атома:

$$\Delta E = E_{L,M_L} - E_{L-1,M_{L-1}} = hc \frac{\Delta \overline{\nu}}{2} \tag{1}$$

По определению магнетон Бора – это коэффициент пропорциональност между значениями ΔE и B

$$\mu_B = \frac{\Delta E}{B}$$

Откуда с учетом выражения (1) можно получить значение магнетона Бора в общем виде:

$$\mu_B = hc \frac{\Delta \overline{\nu}}{2B} \tag{2}$$

Эксперимент проводился в случае поперечного эффекта, то есть когда излучение проходило в направлении, прерпендикулярном магнитному полю. В результате были видны три линейно поляризованные компоненты: несмещенная π - компнента, поляризованная вдоль поля и две симметрично относительно нее расположенные σ - компоненты, поляризованные перпендикулярно полю.

Рис. 1. Расщепление спектральных линий атома кадмия при нормальном поперечном эффекте

Были измерены радиусы колец двух поляризованных *σ*- компонент (см. рис. 1). Далее были оценены значения магнетона Бора в соответствии с формулой (2) для значений сил токов, протекающих через катушку, соотвтественно 5, 6, 8 и 10 А (табл. 1).

Таблица 1

I,	В,	rlb,	rla,	r2b,	r2a,	r3b,	r3a,	r4b,	r4a,	Δ, мкм	δ , мкм	$\Delta \bar{\nu}, 1/c$	μ_B , Дж/Тл
А	мТл	МКМ											
5	500	12.5	14.6	21	22.3	27.1	28	31.8	32.7	282.75	55.21	32.5434	6.468E-24
6	600	12.3	14.7	20.8	22.3	27	28.1	31.6	32.8	279.585	66.83	39.8417	6.5988E-24
8	800	11.8	15.1	20.5	22.7	26.7	28.4	31.2	32.9	276.172	96.61	58.3044	7.2425E-24
10	900	11.3	15.6	20.3	22.9	26.5	28.6	31.4	33.3	285.022	116.65	68.2153	7.5321E-24

Оценка величины магнетона Бора при нормальном поперечном эффекте

Аналогичный эксперимент был проведен в случае продольного эффекта, то есть когда излучение проходило в направлении, параллельном магнитному полю. В результате были получены изображения отдельно σ - компонент излучения и отдельно π - компнент излучения, что соответсвует круговой поляризации.

Рис. 2. Расщепление спектральных линий атома кадмия при нормальном продольном эффекте

Измерения радиусов колец (см. рис. 2) проводились с применением пластины $\frac{\lambda}{4}$.

В результате также были вычислены значения магнетона Бора в соответствии с формулой (2) для сил токов через катушку соотвественно 5, 6, 8 и 10 А (табл. 2).

Таблица 2

I,	В,	r1b,	r1a,	r2b,	r2a,	r3b,	r3a,	r4b,	r4a,	Δ, мкм	δ,	$\Delta \bar{\nu}, 1/c$	μ_B ,
А	мТл	МКМ		МКМ		Дж/Тл							
5	500	14.1	16.3	21.9	23.4	27.7	29.1	32.6	33.5	283.395	68.46	40.2618	8.002E-24
6	600	13.8	16.6	21.9	23.5	27.6	29.2	32.5	32.5	265.99	62.16	38.9488	6.4509E-24
8	800	13.4	16.8	21.7	23.8	27.4	29.3	32.2	32.2	259.99	76.49	49.0339	6.0909E-24
10	900	13.3	16.9	21.4	24.1	27.2	29.4	32.1	32.1	258.22	89.02	57.4585	6.3444E-24

Оценка величины магнетона Бора при нормальном продольном эффекте

Аномальный Эффект Зеемана

Эксперимент проводился в случае аномального эффекта для длины волны 450 нм для поперечного направления магнитного поля. Результат оценивался при вертикальной поляризации. В этом случае могли быть определены радиусы двух внутренних колец из набора шести колеци на порядок, так как они хорошо разделялись и были видны, в то время как другие кольца разделялись плохо.

Рис. 3. Расщепление спектральных линий атома кадмия при аномальном эффекте

Были измерены радиусы колец двух поляризованных *σ*- компонент (см. рис. 3) в пределах разрешающей способности интерферометра и разрешения WEB-камеры. Далее были оценены значения магнетона Бора в соответствии с формулой (2) для значений сил токов через катушку соотвественно 5, 6, 8 и 10 А (табл. 3).

Таблица 3

I,	В,	r1b,	r1a,	r2b,	r2a,	r3b,	r3a,	r4b,	r4a,	Δ,	δ,	$\Delta \bar{\nu}, 1/c$	μ_B , Дж/Тл
А	мТл	МКМ	МКМ										
5	500	1.21	1.39	1.73	1.84	2.12	2.2	2.44	2.54	1.513	0.426	46.9263	9.3266E-24
6	600	1.21	1.4	1.72	1.85	2.1	2.21	2.43	2.54	1.504	0.495	54.8467	9.084E-24
8	800	1.18	1.43	1.7	1.87	2.08	2.25	2.42	2.57	1.505	0.686	75.9437	9.4336E-24
10	900	1.15	1.44	1.67	1.9	2.07	2.25	2.42	2.58	1.542	0.787	85.1085	9.3974E-24

Оценка величины магнетона Бора при нормальном поперечном эффекте.

Результаты

В ходе проведенной работы были экспериментально оценены значения магнетона Бора с применением оптических методов. Была произведена настройка установки, в ходе которой удалось добиться высококачественного изображения расщепления спектральных линий.

Список литературы

- Мартинсон Л.К., Смирнов Е.В. Квантовая физика. М.: МГТУ им. Н.Э. Баумана, 2004.
 293 с.
- 2. Матвеев А.Н. Атомная физика. М.: ООО «Издательство Оникс», 2007. 249 с.
- 3. Шпольский Э.В. Атомная физика М.: Наука, 1984. 990 с.