МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 623.468:623.562:623.462

Оценка кинетического (ударно-проникающего) действия зенитных управляемых ракет по воздушным и надводным целям

Попов Ю.В., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Высокоточные летательные аппараты»

Научный руководитель: Пусев В.И., к.т.н., доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана <u>kafsm4@sm.bmstu.ru</u>

Исследование кинетического (ударно-проникающего) действия ЗУР не только по воздушным, но и по надводным целям, связано с тем, что еще с 1961 г. Военно-морской флот СССР выдвинул требование к любым управляемым ракетам корабельного базирования о способности поражать в качестве второй цели надводные корабли [1]. Можно показать, что наиболее эффективным является подрыв ЗУР во внутреннем объеме цели по сравнению с неконтактным подрывом (основное поражающее действие – осколочное) или с контактным подрывом на внешнем контуре цели (поражающее действие – фугасно-кумулятивное) (рис.1). Следует отметить, что у современных ЗУР промахи стремятся к нулю, а зенитно-ракетный комплекс (ЗРК) «Астер» (Франция-Италия, принят на вооружение в 2002 г. [2]) имеет ЗУР, созданную для прямого попадания в цель.

Для оценки ударно-проникающего действия ЗУР были выбраны ЗУР ЗРК корабельного базирования: ЗУР 9М38 (рис.2) ЗРК М-22 «Ураган» (корабельная версия ЗРК «Бук») [3,4], ЗУР 48Н6Е (рис.3) ЗРК «Форт» (корабельная версия ЗРК С-300ПМУ1) [5], ЗУР 9М33 (рис.4) ЗРК «Оса-М» (корабельная версия ЗРК «Оса») [6] и ЗУР ЗРК «Астер» (рис.5 [2]).

Неконтактное действие

Контактное действие

Проникающе-фугасное действие

Рис. 1. Виды действия БЧ

Рис. 2. Компоновка ЗУР 9М38 ЗРК «Бук»

головка самонаведения; 2 - радиовзрыватель; 3 - антенна радиовзрывателя; 4 - БЧ;
 ракетный двигатель твердого топлива (РДТТ); 6 - удлиненный газоход сопла;
 газогенератор; 8 - рулевая машинка; 9 - турбогенератор.

Рис. 3. Компоновка ЗУР 48Н6Е

 радиопеленгатор (визир); 2 - автопилот; 3 - радиовзрыватель; 4 - аппаратура радиоуправления; 5 - источник электроэнергии; 6 - предохранительно-исполнительный механизм; 7 - БЧ; 8 - РДТТ; 9 - аэродинамический руль-элерон; 10 - рулевой привод; 11 - устройство раскрытия руля-элерона; 12 - газовый руль-элерон.

Рис. 4. Компоновка ЗУР 9М33 ЗРК "Оса "

1 передатчик радиовзрывателя; 2 - рулевая машинка; 3 - блок питания; аккумулятор воздушный давления; 5 приемник 4 радиовзрывателя; 6 аппаратура радиоуправления; 7 - автопилот; 8 БЧ; 9 РДTT; 10 - шарнир стабилизатора

Рис. 5. Компоновка ЗУР "Астер-15" [1]:

радиопрозрачный обтекатель; 2 - бортовая аппаратура; 3 - неконтактный взрыватель;
 источники электропитания; 5 - осколочно-фугасная БЧ; 6 - щелевые сопла; 7 - крылья

малого удлинения; 8 - аэродинамические рули-элероны; 9 - РДТТ с поворотными соплами; 10 - крылья; 11 - электромеханические приводы; 12 - газовод; 13 - первая ступень (ускоритель); 14 - переходный отсек; 15 - разгонно-маршевый РДТТ; 16 - двигатель поперечного управления; 17 - приемоответчик; 18 - аппаратурный отсек;

При определении параметров мишенной обстановки для указанных ЗУР учитывались конструктивные особенности стратегических бомбардировщиков В-2 (США), изготовленных с применением технологий «стелс», и эскадренных миноносцев управляемого ракетного оружия (УРО) типа «Орли Берк» (США). Планер бомбардировщиков В-2 изготавливается в основном из титановых и алюминиевых сплавов с широким применением углепластиков, а толщина монолитных титановых панелей кессона достигает 23 мм [7]. Броневая защита эсминцев УРО типа «Орли Берк» является локальной, а толщина броневых листов не превышает 25,4 мм [8].

Из анализа компоновочных схем ЗУР следует, что конструкцию ЗУР без учета радиопрозрачного обтекателя головки самонаведения можно представить в виде эквивалентного стержня с плоским передним срезом и диаметром, равным миделевому сечению ЗУР (рис.6).

Рис. 6. Штриховая линия – цилиндрический разнородный стержень, эквивалентный ЗУР

Так как диаметр рассматриваемых ЗУР более 100 мм, то относительная толщина конструктивных элементов указанных целей h/d (h – толщина преграды, d –диаметр миделевого сечения ЗУР) находится в области тонких (h/d < 0,5) [9] и очень тонких (h/d < 0,1) [10] преград. Тогда для случая тонкой преграды можно определить работу, необходимую для разрушения преграды недеформируемым цилиндром в статическом приближении [11-13], в следующем виде:

$$W_1 = \frac{1}{2} \pi dh^2 \tau_{m\partial} , \qquad (1)$$

где W_1 – работа, необходимая для разрушения преграды толщиной *h* цилиндром диаметром *d* в статическом приближении; $\tau_{m\partial} = \sigma_{m\partial} / \sqrt{3}$ - динамический предел текучести

материала преграды при сдвиге; $\sigma_{m\partial}$ – динамический предел текучести материала преграды при растяжении.

Приравнивая к соотношению (1) кинетическую энергию цилиндра, получим выражение для толщины пробиваемой тонкой металлической преграды в виде:

$$h = V_0 \sqrt{m_c / (\pi d \tau_{m\partial})}, \qquad (2)$$

где V_0 – скорость удара; m_c – приведенная к эквивалентному цилиндру масса ЗУР. Очевидно, что выражение (2) справедливо для недеформируемого цилиндра, а ЗУР является деформируемой при высокоскоростном ударе. При решении аналогичных задач путем численного моделирования с применением метода конечных разностей получено, что работа, затрачиваемая на деформирование и разрушение преграды, с точностью до 10% соответствует работе, затрачиваемой на деформирование ударника. Тогда деформирование конструкции ЗУР можно учесть следующим образом [11]:

$$h = V_0 \sqrt{m_c / (2\pi d\tau_{mo})}. \qquad (3)$$

При расчетах, за величину предела текучести σ_{dt} материала экрана принималась величина 587 МПа, соответствующая легкой (до 30 мм) гомогенной броне марок STS и Class B (США) и Post-1930 NSA (Англия) [14] с коэффициентом, учитывающим динамику взаимодействия, величиной 1,25 [12]. А также величина 490 МПа, соответствующая пределу текучести алюминиевого сплава B95, и 1000 МПа, соответствующая пределу текучести титанового сплава BT-16 [15], использующихся в самолетостроении. При этом рассматривался случай подхода ЗУР к преграде по нормали.

Следует отметить, что минимальную скорость сквозного пробития преграды можно оценить на основе квазидинамического подхода [16], где учитывается инерционное сопротивление преграды наряду с прочностным сопротивлением (1-3), а работа по пробитию преграды определяется следующим образом [11]:

$$W = \frac{1}{2} \pi dh^2 \tau_{m\partial} + \frac{1}{8} \pi d^2 h \rho_n V_0^2, \qquad (4)$$

где ρ_n – плотность материала преграды. Тогда выражение для скорости сквозного пробития преграды с учетом деформируемости ЗУР можно получить в следующем виде:

$$V = 2\sqrt{\pi dh^2 \tau_{m\partial}} / \left(2m_c - \pi d^2 h\rho_n\right) , \qquad (5)$$

где *V* – минимальная скорость сквозного пробития.

Исходные данные представлены в таблице 1.

Таблица 1

				σ _{тд} ,ΜΠa			ρ _п , кг/м ³			h, м		
ЗУР	d, м	V, м/с	т _с , кг	сталь	ТИТАНОВЫЙ СПЛАВ	алюминиевый сплав	сталь	ТИТАНОВЫЙ СПЛАВ	алюминиевый сплав	cranb	ТИТАНОВЫЙ СПЛАВ	алюминиевый сплав
9M38	0,33	850	284	587	1000	490	7800	4500	2700	0,03	0,02	0,02
48H6E	0,52	до 2100	443	587	1000	490	7800	4500	2700	0,03	0,02	0,02
ASTER 15	0,18	1000	65,8	587	1000	490	7800	4500	2700	0,03	0,02	0,02
ASTER 30	0,18	1400	65,8	587	1000	490	7800	4500	2700	0,03	0,02	0,02
9M33	0,21	500	64,4	587	1000	490	7800	4500	2700	0,03	0,02	0,02

Исходные данные

За массу (m_c) примем массу ЗУР при подходе к цели.

На основе данных полученных в ходе расчетов составим таблицу 2.

Таблица 2

	Миним	Скорость			
ZVD	25,00	23мм,	20мм,	при	
391	23MM,	титановый	алюминиевый	подходе к	
	CTAJIB	сплав	сплав	цели, м/с	
9M38	41,88	48,79	29,24	850	
48H6E	43,75	49,93	29,62	до 2100	
ASTER 15	65,46	75,52	45,04	1000	
ASTER 30	65,46	75,52	45,04	1400	
9M33	73,01	82,89	49,07	500	

Результаты расчета (баллистический предел)

Из анализа результатов расчета (таблица 2) следует, что рассмотренные ЗУР могут гарантированно пробивать элементы конструкции современных воздушных и надводных целей. Поэтому возможно занесение БЧ ЗУР во внутренний объем целей, а БЧ ЗУР осколочного и осколочно-фугасного типов с неконтактным или контактным подрывом на внешнем контуре цели могут заменяться на проникающе-осколочные БЧ с подрывом во внутреннем объеме цели.

Список литературы

- Кузин В.П., Никольский В.И. Военно-морской флот СССР 1945-1991. СПб.: Историческое морское общество. 1996. 653 с.
- 2. Зенитная ракетная система «Астер» (краткое описание) // Вестник ПВО. 2008. Режим доступа: <u>http://pvo.guns.ru/other/france/aster/index.htm</u> (дата обращения 17.11.2012).
- Ангельский Р. Самоходный зенитный ракетный комплекс «Бук». ЗРК ПВО сухопутных войск. Ч. 1 // Техника и вооружение. 2002-2004 гг. Режим доступа: <u>http://vadimswar.narod.ru/ALL_OUT/TiVOut0204/PVSV1/PVSV1027.htm</u> (дата обращения 10.01.2012).
- Корабельный многоканальный ЗРК средней дальности M-22 «Ураган» (SAN7 Gadfly) // Вестник ПВО. 2008. Режим доступа: <u>http://pvo.guns.ru/naval/m22.htm</u> (дата обращения 08.02.2012).
- Ганин С., Карпенко А., Ангельский Р. Система С-300П. ЗРК ПВО страны // Техника и вооружение. 2002-2004 гг. Режим доступа: <u>http://vadimswar.narod.ru/ALL_OUT/TiVOut294/S300P/S300P001.htm</u> (дата обращения 10.01.2012).
- ЗРК ПВО сухопутных войск. Часть 2 // Техника и вооружение. 2002-2004 гг. Режим доступа: <u>http://vadimswar.narod.ru/ALL_OUT/TiVOut0204/PVSV2001.htm</u> (дата обращения 08.02.2012).
- 7. Стратегический бомбардировщик В-2. Режим доступа:http://www.cnw.mk.ua/weapons/airforce/bomber/b2/index.htm (дата обращения10.02.2013).
- Орли Бёрк // Энциклопедия кораблей. Режим доступа: <u>http://ship.bsu.by/ship/101267</u> (дата обращения 18.02.2013).
- Пусев В.И., Овчинников А.Ф., Марков В.А., Киселев В.М., Андрюшин А.А. Вопросы бронирования и противостояния надводных средств поражения и брони броненосцев // Оборонная техника. 2007. №3-4. С. 104-118.
- Пусев В.И., Овчинников А.Ф., Марков В.А., Киселев В.М., Андрюшин А.А. Развитие бронирования и противостояние надводных средств поражения и брони дредноутов // Оборонная техника. 2009. №1-2. С. 53-66.
- Пусев В.И., Марков В.А. Оценка компоновки и ударно-проникающего действия одномоторных поршневых самолетов // Вопросы оборонной техники. Сер. 16. Технические средства противодействия терроризму. 2009. № 5-6. С. 68-73.

- 12. Lethaby J.W., Skidmore I.C. The deformation and plugging of thin plates by projectile impact // Mech. Properties High Rate Strain. Proc. Conf. Oxford, 1974. № 21. P. 429-441.
- 13. Пусев В.И. Деформирование и разрушение тонких металлических пластин при ударе цилиндра по нормали // Оборонная техника. 2002. № 1-2. С. 80-84.
- 14. Балакин С.А., Дашьян А.В., Потянин С.В., Токарев М.Ю., Чаусов В.Н. Линкоры Второй мировой. Ударная сила флота. М.: Коллекция, Яуза, ЭКСМО, 2006. 256 с.
- 15. Механические характеристики титана и титановых сплавов. Режим доступа: http://ispms.ru/ru/production/42/ (дата обращения 18.01.2013).
- 16. Томсон В. Приближенная теория пробивания брони // Механика (сб. перев.). 1956.
 № 1. С. 134-139.