электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 621.744.3

Сравнение формовочных смесей на основе бентонитовой глины Даш-Салахлинского месторождения с формовочными смесями на основе каолинитовой глиной Нижнеувельского месторождения

Бикбулатов Р.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Литейные технологии»

Шарубский А.Г., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Литейные технологии»

Научный руководитель: **Озерова Е.С.**, ассистент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, bauman@bmstu.ru

В современном отечественном литейном производстве до 72% отливок производятся методом литья в песчано-глинистые формы [1]. При этом качество отливок очень сильно зависит от правильного подбора и качества формовочных материалов.

При этом методе литья до 45-55% неустранимых дефектов литья возникают из-за низкого качества формовочной смеси, поэтому повышение качества формовочной смеси является важной задачей, стоящей перед отечественным литейным производством [2].

Формовочная смесь, используемая при литье в песчано-глинистые формы, представляет собой смесь песка, глины, воды и специальных добавок, состав и количество которых зависят от условий технологического процесса изготовления литейных форм. В данной работе рассматривается влияние на качество формовочной смеси формовочной глины.

По виду породообразующего материала глины подразделяют на, [3]:

- Каолинитовые главной составляющей является водный алюмосиликат каолинит $Al_2O_3 \cdot 2SiO_2 \cdot nH_2O$;
- •Бентонитовые главной составляющей является монтмориллонит $Al_2O_3{\cdot}4SiO_2{\cdot}nH_2O{\cdot}mH_2O.$
- Гидрослюдистые слюды, обогащенные H_3O , OH, H_2O : гидробиотит, гидромусковит, гидрофлогопит, иллит. Состав и свойства промежуточные между составом биотита, мусковита и вермикулита.

•Полиминеральные – все глины, в которых нет четко выраженного основного породообразующего минерала.

В последнее время все больше российских предприятий переходят с каолинитовых глин на бентонитовые глины [4]. Это связано с лучшими связующими свойствами бентонитовых глин по сравнению с каолинитовыми или гидрослюдистыми глинами, что приводит к повышению технологических свойств формовочных смесей.

Целью данной работы было сравнение технологических свойств смесей двух глин, активно используемых в российском литейном производстве — бентонитовой глины Даш-Салахлинского месторождения марки П1Т1 и каолинитовой глины Нижнеувельского месторождения марки НУ-1 с точки зрения их применения в качестве формовочных материалов для изготовления форм для производства чугунных отливок методом ручной формовки.

Нижнеувельская глина марки НУ-1 представляет собой формовочную огнеупорную глину марки С1, технологические свойства и состав этой глины, в соответствии с ГОСТ 3226-93, приведены в табл. 1, табл. 2.

Состав формовочной огнеупорной глины марки С1

Таблица 1

Наименование показателя	Норма
Массовая доля Al_2O_3 , %, не менее	23,0
Массовая доля железа в пересчета на Fe_2O_3 , %, не более	4,5
Потери массы при прокаливании, %, не более	18,0
Коллоидальность, %, не менее	8,0
Концентрация обменных катионов, мг-экв/100 г сухой глины,	7,0
не менее	

Таблица 2 Технологические свойства формовочной огнеупорной глины марки C1

	Предел прочности при сжатии, Па (кгс/см ²), не менее			
Марка	во влажном состоянии	в сухом состоянии		
C1	$3,432\cdot 10^4 (0,35)$	34,323 (3,5)		

В работе [5] также приводятся результаты входного контроля каолинитовой Нижнеувельского месторождения глины, указанием прочности в зоне конденсации влаги, термостойкости, коллоидальности и водопоглощение глин (табл. 3).

Результат входного контроля огнеупорной глины

Марка	Предел прочности	Предел прочности при разрыве	Термическая
	при сжатии во	в зоне конденсации влаги,	устойчивость,
	влажном состоянии,	кгс/см ²	единицы,
	кгс/см ²		не менее
Нижнеувельская	0,39	0,006	0,85
глина			

Состав и технологические свойства глины марки П1Т1 Даш-Салахлинского месторождения, в соответствии с ГОСТ 28177-89, приведены в табл. 4, табл.5.

Таблица 4 Состав формовочной бентонитовой марки $\Pi 1 T 1$

Наименование показателя	Норма
Массовая доля монтмориллонита, %, не менее	30
Концентрация обменных катионов, мг-экв/100 г сухой глины,	30
не менее	
Массовая доля карбонатов в пересчете на СаСО3, %, не более	10
Массовая доля сульфидной серы, %, не более	0,3
Массовая доля железа в пересчета на Fe ₂ O ₃ , %, не более	12
Коллоидальность, %, не менее	10
Водопоглащение, единицы, не менее	1,5

Таблица 5 Технологические свойства бентонитовой глины марки $\Pi 1 T 1$

	Марка	Предел прочности при сжатии, Па (кгс/см ²), не менее	Предел прочности при разрыве в зоне конденсации влаги, Па (кгс/см ²), не менее	Термическая устойчивость, единицы, не менее
ŀ	П1Т1	$8.826 \cdot 10^4 \ (0.9)$	$0.275 \cdot 10^4 (0.028)$	0,6

Проанализировав данные таблиц, можно отметить, что смеси на основе бентонитовых глин обладают большей прочностью на сжатие в сухом и влажном состоянии и значительно более высокой прочностью в зоне конденсации влаги, имеют лучшие связующие свойства. Повышенные прочность в сухом и влажном состоянии и термостойкость свидетельствуют о снижении расхода связующего при использовании бентонитовых глин. Низкая прочность в зоне конденсации влаги может привести к браку по подутию отливок, образованию ужимин и, следовательно, при применении каолинитовых глин целесообразно вводить в смесь противоужиминные добавки, такие как ЭКР.

Для комплексной оценки свойств смесей на основе каолинитовых и бентонитовых глин и разработки составов смесей для ручной формовки были проведены исследования основных технологических свойств формовочных смесей с различным содержанием глинистого связующего. Для смесей на основе Нижнеувельской глины содержание связующего варьировалось от 8 до 12%, для смесей на основе бентонита Даш-Салахлинского месторождения — от 4 до 8%. В качестве основных свойств смеси были приняты: прочность при сжатии и сколе в сыром состоянии, уплотняемость, влажность, текучесть и газопроницаемость.

Результаты экспериментов приведены в табл. 6 - 11 и на рис. 1 - 6.

 Таблица 6

 Смесь с содержанием 4% Даш-Салахлинского бентонита

Влажность, %	1,87	1,72	1,40	1,32
Уплотняемость, ед.	63	58	45	34
Прочность при сжатии, кгс/см ²	0,76	0,91	1.14	1,17
Прочность при сколе, $\kappa \Gamma c/c m^2$	0,14	0,16	0,20	0,18
Текучесть,	88	86	82	74
Газопроницаемость, ед.	204	206	210	203

 Таблица 7

 Смесь с содержанием 6% Даш-Салахлинского бентонита

Влажность, %	2,61	2,25	2,02	1,86
Уплотняемость, ед.	64	56	47	35
Прочность при сжатии, кгс/см ²	1,17	1,25	1,53	1,53
Прочность при сколе, $\kappa rc/cm^2$	0,28	0,30	0,34	0,36
Текучесть	89	82	79	76
Газопроницаемость, ед.	220	220	210	208

Таблица 8 Смесь с содержанием 8% Даш-Салахлинского бентонита

Влажность, %	3,75	3,39	3,11	2,86
Уплотняемость, ед.	61	54	45	37
Прочность при сжатии, кгс/см ²	1,90	2,08	2,24	2,33
Прочность при сколе, $\kappa rc/cm^2$	0,43	0,50	0,53	0,54
Текучесть,	87	78	75	68
Газопроницаемость, ед.	226	226	220	220

 $\begin{tabular}{ll} $\it Taблица 9$ \\ \begin{tabular}{ll} $\it Cmecs c coдержанием 8% Нижнеувельской огнеупорной глины \\ \end{tabular}$

Влажность, %	3,87	3,53	3,31	2,96
Уплотняемость, ед.	63	62	62	60
Прочность при сжатии, кгс/см ²	0,38	0,44	0,47	0,50
Прочность при сколе, $\kappa rc/cm^2$	≈0,04 в связи с низкой прочностью замерить не получилось			
Текучесть,	60	50	43	33
Газопроницаемость, ед.	220	220	218	218

 $\begin{tabular}{ll} $\it Taблицa~10$ \\ \it Cmecs~c~coдержанием~10\%~ Huжнeyвeльcкoй~orneyпophoй~rлины \end{tabular}$

Влажность, %	4,82	4,46	4,16	3,75
Уплотняемость, ед.	62	62	61	61
Прочность при сжатии, кгс/см ²	0,45	0,47	0,58	0,61
Прочность при сколе, $\kappa rc/cm^2$	0,08	0,12	0,13	0,15
Текучесть,	58	43	42	38
Газопроницаемость, ед.	231	231	246	246

 $\it Tаблица~11$ Смесь с содержанием 12% Нижнеувельской огнеупорной глины

Влажность, %	5,95	5,52	5,05	4,52
Уплотняемость, ед.	64	64	63	63
Прочность при c жатии, кгс/ c м 2	0,45	0,58	0,63	0,65
Прочность при сколе, $\kappa \Gamma c/cm^2$	0,12	0,14	0,16	0,16
Текучесть,	50	42	37	29
Газопроницаемость, ед.	226	226	220	224

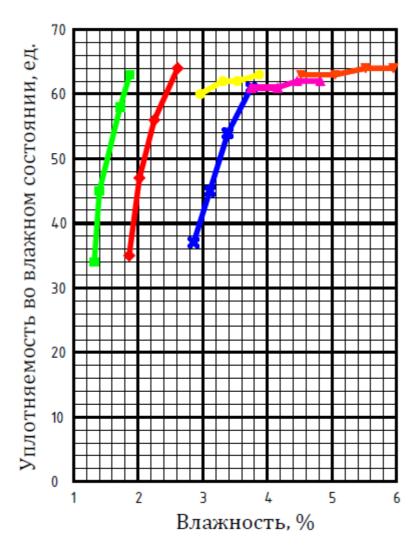


Рис.1. Анализ уплотняемости во влажном состоянии для бентонитовой и огнеупорной глин

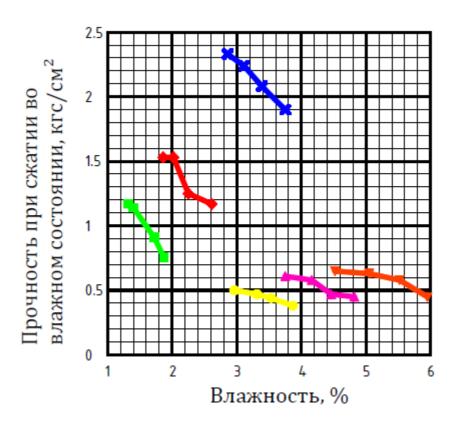


Рис.2. Анализ прочности при сжатии во влажном состоянии для бентонитовой и огнеупорной глин

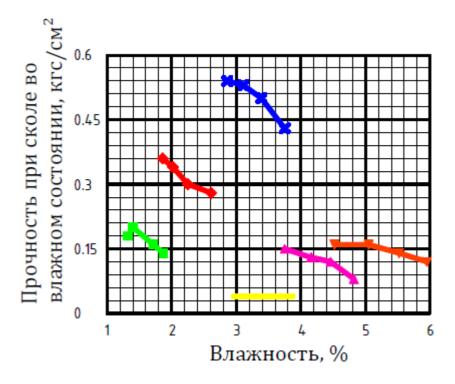


Рис.3. Анализ прочности при сколе во влажном состоянии для бентонитовой и огнеупорной глин

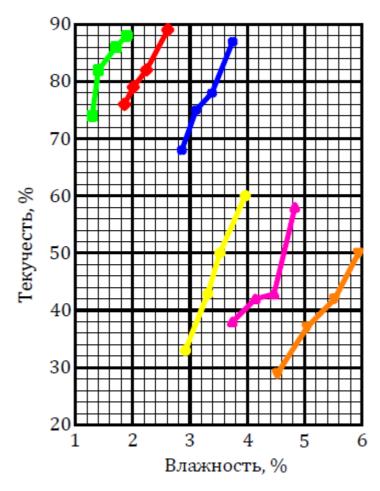


Рис.4. Анализ текучести по Орлову для бентонитовых и огнеупорных глин

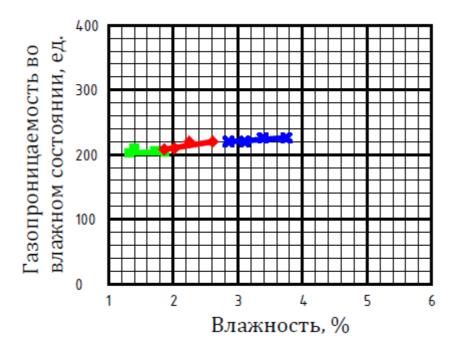


Рис.5. Анализ газопроницаемости во влажном состоянии для бентонитовой глины

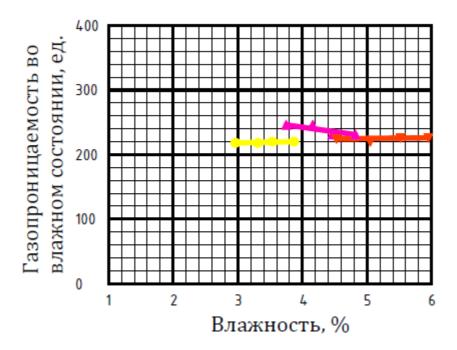


Рис. 6. Анализ газопроницаемости во влажном состоянии для огнеупорной глины

формовочная смесь с 4% содержанием Даш – Салахлинского бентонита;
 формовочная смесь с 6% содержанием Даш – Салахлинского бентонита;
 формовочная смесь с 8% содержанием Даш – Салахлинского бентонита;
 формовочная смесь с 8% содержанием Нижнеувельской глины;
 формовочная смесь с 10% содержанием Нижнеувельской глины;
 формовочная смесь с 12% содержанием Нижнеувельской глины;

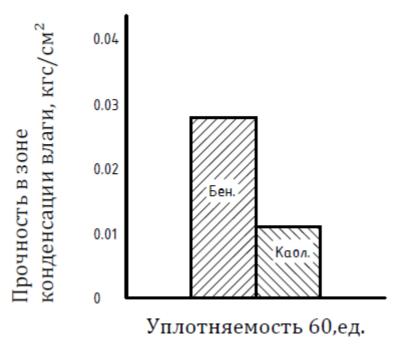


Рис. 6. Прочность в зоне конденсации влаги для бентонитовой и огнеупорной глин, при уплотняемости 60 ед

Прочность бентонитовой глины значительно выше, чем каолинитовой, даже 4% смесь на основе бентонитовой глины значительно прочнее, чем 12% смесь на основе каолинитовой глины. Однако, при ручной формовке, такая высокая прочность формовочной смеси может привести к получению недоуплотненных форм. Прочность при сколе для каолинитовых глин очень невелика (рис. 3), что говорит о невозможности изготавливать формы с высокими болванами, так как при протяжке есть риск подрыва или даже разрушения болвана. Бентонитовая глина, в отличие от каолинитовой, значительно более чувствительна к изменениям во влажности, даже незначительное снижение влажности в 0,2% ведет к существенному изменению технологических свойств смеси (рис. 1). Следовательно, нельзя допускать пересыхания смеси и длительного выстаивания открытых форм до заливки. Это создает дополнительные трудности при мелкосерийной ручной формовке. Однако, текучесть формовочных смесей на основе бентонитовых глин значительно выше, чем у смесей на основе каолинитовой глины (рис. 4), что говорит о возможности изготавливать формы со значительно более сложной конфигурацией поверхности. Как показали эксперименты, тип глин практически не влияет на газопроницаемость смесей, однако в связи с низкой прочностью смесей на основе каолинитовых глин, их содержание в смеси будет значительно выше, что будет приводить к незначительному ухудшению газопроницаемости смеси (рис. 5 - 6).

На основании проведенных исследований можно сделать вывод, что, несмотря на значительно более высокие прочностные характеристики, применение бентонитовых глин в ручной формовке ограничено в связи с высокой чувствительностью к колебаниям во влажности смеси.

Однако, при отсутствии длительного выстаивания, для ручного изготовления форм сложной конфигурации можно рекомендовать смесь на основе 4% бентонита Даш-Салахлинского месторождения, а для форм простой конфигурации – смесь на основе 12% глины Нижнеувельского месторождения с добавлением ЭКР.

Список литературы

- 1. Дибров И.А. Состояние и перспективы развития литейного производства России // 7-й Съезд литейщиков России (Новосибирск, 23-27 мая 2002 г.): труды. Новосибирск, 2005. С. 4-13.
- 2. Долгополов В.Н. Техническое перевооружение смесеприготовительных отделений: выбор типа смесителя и поэтапная комплектация // Литье Украины. 2005. №8. С. 5-12.
- 3. Болдин А.Н., Давыдов Н.И., Жуковский С.С. Литейные формовочные материалы. Формовочные, стержневые смеси и покрытия: справочник. М.: Машиностроение, 2006. 507 с.
- 4. Снисарь В.П., Василенко В.В. Бентонит в литейном производстве и продукция ОАО «Завод утяжелителей»» // Литье Украины. 2004. № 4. С. 6-13.
- 5. Бондарчук Д.А., Коротченко А.Ю., Иванова А.В. Анализ долговечности песчанобентонитовых смесей // Молодежный научно-технический вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2013. № 12. Режим доступа: http://sntbul.bmstu.ru/doc/637999.html (дата обращения 03.11.2014).