МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 004.942

Инженерный анализ конструкций электронных модулей первого уровня на механические и тепловые воздействия средствами САПР SOLID EDGE

Качалова А.М., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Проектирование и технология производства электронной аппаратуры»

Научный руководитель: Курносенко А.Е., старший преподаватель кафедра «Проектирование и технология производства электронной аппаратуры» Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана info@iu4.bmstu.ru

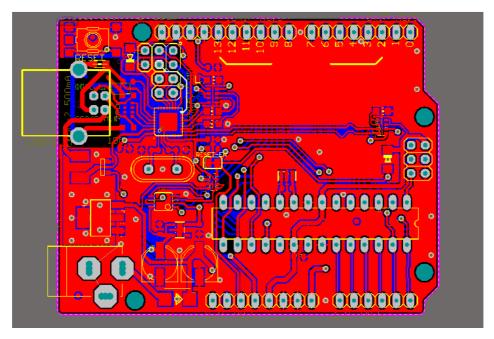
Ввеление

Работа посвящена алгоритмизации проектирования и моделирования конструкции электронного модуля первого уровня в 3D САПР на базе данных, полученных из электронной САПР, и проведению инженерного анализа данной конструкции.

Этап моделирования тепловых и механических характеристик печатных плат является важным этапом в проектировании конструкции электронного устройства. Это обусловлено тем, что по мере дальнейшей интеграции электронных и механических узлов изделий конструкторы механической части и разработчики электронных модулей вынуждены все чаще взаимодействовать между собой. Подход к проектированию, основанный на их взаимодействии, существенно уменьшает время и денежные затраты на создание опытных образцов и испытания изделия. На ранних стадиях процесса разработки изделия инженер-конструктор механической части может использовать инструменты моделирования для оценки всех режимов работы сборки в реальных условиях эксплуатации, привлекая информацию из электронной САПР.

Актуальность работы определяется тем, что проектирование устройства, включающее механическую и электрическую составляющие, в современной среде разработки должно происходить в одном информационном пространстве, связывающим ЕСАD и MCAD с учетом всех ограничений, налагаемых каждой из этих частей друг на друга. Новизна предлагаемой работы заключается в реализации современного уровня совместного проектирования изделий [1].

Цель работы – разработка алгоритма инженерного анализа электронного модуля первого уровня на тепловые и механические воздействия в 3D САПР Solid Edge.


В рамках работы решаются следующие задачи:

- Получение модели конструкции в электронной САПР;
- Получение модели конструкции в 3D САПР;
- Проведение теплового анализа;
- Проведение механического анализа;
- Сравнение полученных результатов с теоретическими расчетами.

1 Создание электронной модели устройства

В качестве примера инженерного анализа было выбрано устройство Arduino Uno R3. Arduino — это электронный конструктор и удобная платформа быстрой разработки электронных изделий для новичков и профессионалов. Платформа пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду.

Проектирование электронной части модуля производится в программе Altium Designer (рис. 1). После трассировки модель имеет все данные для передачи в механическую САПР.

Puc.1. Создание электронной модели платы Arduino Uno R3

2 Создание 3D модели платы

Для проведения анализа необходимо создать модель печатной платы в ECAD программе, создать или подключить библиотеки компонентов и сопоставить двумерное изображение элемента и его трехмерную модель. Затем печатная плата экспортируется в формат IDF и открывается в необходимой MCAD-системе, в которой проводится инженерный анализ данной сборки с уже установленными компонентами.

Алгоритм совместного проектирования изделия в ECAD/MCAD-системах представлен на рис. 2. Красными стрелками отмечен типовой процесс проектирования с использованием этих двух видов САПР. После определения параметров платы производится предварительное размещение компонентов, которые имеют строго заданное положение на печатной плате, например, разъемов. Далее полученная информация с помощью межплатформенного формата IDF переводится в ECAD-систему, где происходит окончательное размещение компонентов и трассировка платы. Последним этапом является проверка конструкции в механической САПР, проверка ее собираемости и получение окончательной 3D модели модуля [2].

Импорт модели в формате IDF в CAПР Solid Edge ST6 производится с использованием программы IDF modeler: сохраненный в формате IDF проект платы импортируется в SE, происходит распознавание элементов с использованием библиотеки компонентов, которая может быть создана как вручную, так и загружена из внешнего файла.

Модель печатной платы, компоненты и сам проект сохраняются как детали и сборки SE. Есть возможность редактирования платы с компонентами в SE (рис. 3).

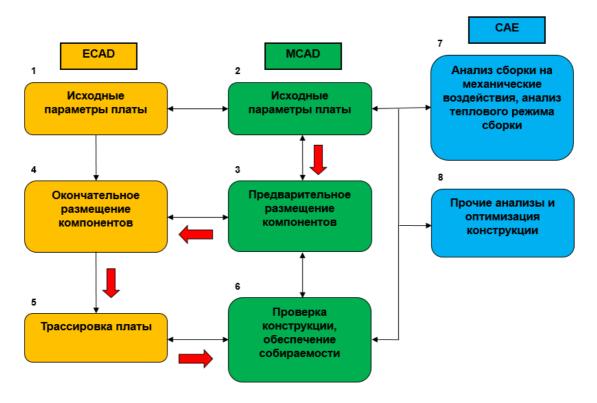


Рис. 2. Алгоритм совместного проектирования электронной и механической составляющей изделия в ECAD/MCAD-системах

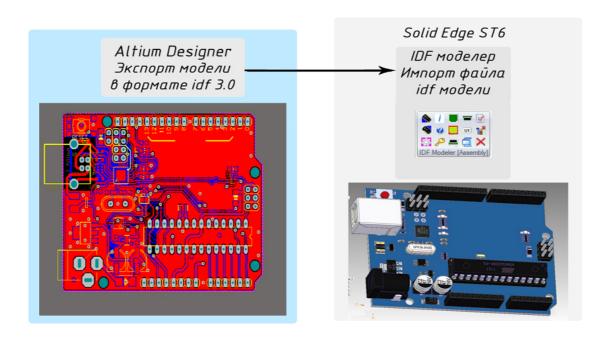


Рис. 3. Создание 3D модели

3 Упрощение модели и подготовка ее к анализу на тепловые и механические воздействия

Инженерный анализ 3D модели устройства, подробно описывающий отклики платы на механические воздействия, весьма сложен в связи с обработкой большого количества поверхностей сложной формы, на что затрачивается много вычислительных ресурсов. В большинстве случаев фаски, скругления и сложные переходы в модели платы незначительно влияют на результаты анализа, поэтому для анализа модель, прежде всего, необходимо упростить, т.е. идеализировать. Это существенно упростит конечно-элементную сетку модели и сократит трудоемкость и время расчета. Необходимо помнить, что упрощение формы конструкции и идеализация тепловых процессов должны обеспечивать адекватность тепловой модели.

В данной модели были оставлены самые необходимые для теплового и механического анализа компоненты: две тепловыделяющие микросхемы, кварцевый резонатор, два электролитических конденсатора и несколько крупногабаритных разъемов. Остальные компоненты, такие как пассивные SMD-компоненты и перемычки, были удалены из модели с целью ее идеализации, так как их масса и тепловыделение значительно уступают вышеперечисленным компонентам (рис.4).

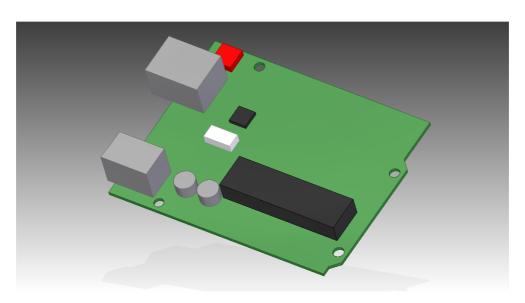


Рис. 4. Идеализация 3D модели

4 Инженерный анализ сборки

4.1 Тепловые воздействия

При расчете теплового поля инженер сталкивается с необходимостью определения коэффициента конвективного теплообмена *а*.

Коэффициент **а** конвективное – это сложная функция, зависящая, в частности, от движения газа, плотности, температуры, специфического нагрева, типа потока (ламинарный, турбулентный) и других факторов, зависящих от времени.

$$\alpha = f(w, p, t, c_p, l, \lambda ...)$$

Аналитическое решение получено лишь для нескольких достаточно простых ситуаций. В большинстве встречающихся на практике случаев этот коэффициент определяется экспериментальным путём, при этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методами теории подобия и представляются в безразмерном виде в форме соответствующих критериев (Nu, Gr, Pr, Re).

В САПР SE при задании параметров теплового анализа необходимо задавать коэффициент α конвективное в явном виде. Поэтому для расчета теплового воздействия был предложен следующий подход: если требуется расчет α конвективное, то его значение рассчитывается коэффициентным итерационным методом. Суть этого метода сводится к расчету теплового режима в несколько этапов, где последовательно определяются перегревы «корпус – окружающая среда», «микромодульный массив – корпус» и т. д. [3].

Далее был предложен алгоритм теплового анализа платы в программе Solid Edge ST6 и проведено сравнение результатов теоретического и экспериментального расчетов на примере описанного выше изделия.

Изделие было помещено в пластмассовый корпус с размерами 78х56х24 и толщиной стенок 2 мм. Упрощенная модель пластмассового корпуса с горизонтальным ориентированием печатной платы представлена на рис. 5. Крепление к корпусу производится с помощью стоек, в связи с идеализацией модели стойки заменены простейшими фигурами — цилиндрами (рис.6). Согласно таблице 1 исходных данных к модели были применены тепловые нагрузки, далее построена тетраэдральная сетка и проведен анализ (рис. 7).

Название	Максимальная температура	Рассеиваемая мощность
Электролитические конденсаторы	+85	0,12 мВт
Кварцевый резонатор 16 МГц	+70	0,1 мВт
Микросхема	+85	1,2 B _T

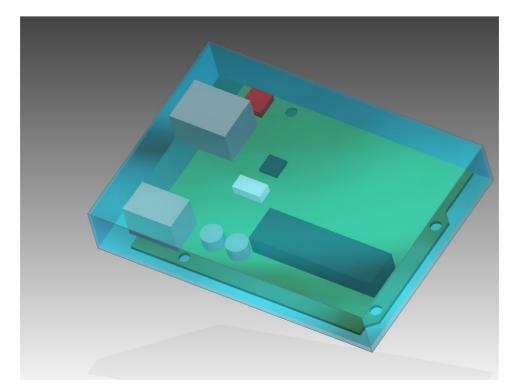


Рис. 5. Устройство в корпусе

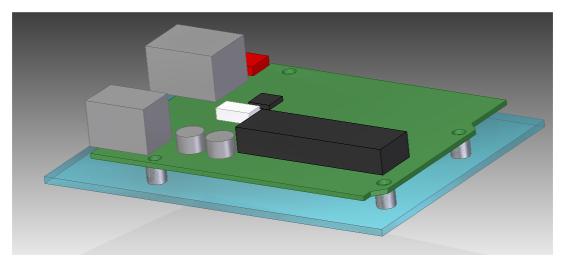


Рис. 6. Крепление платы к корпусу на стойки (остальные крепежные элементы не показаны)

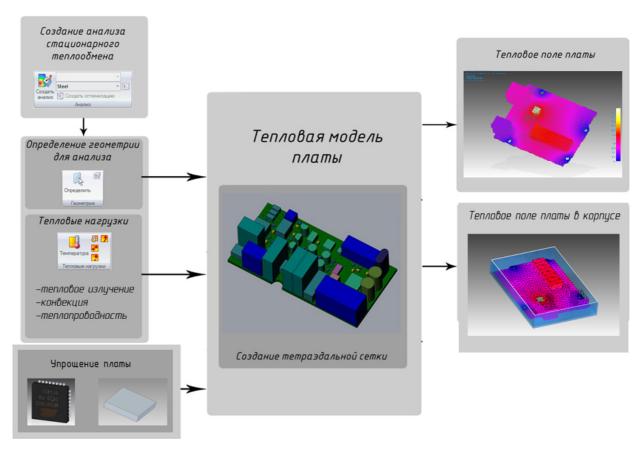


Рис. 7. Алгоритм теплового анализа в сборки CAПР Solid Edge ST6

Тепловыделение компонентов задается, исходя из максимального значения этого параметра по техническому описанию. Для микроконтроллеров Atmega Mega16U2, Аtmega328 мощность тепловыделения 1,2 Вт, для конденсатора – 0,12 Вт. Коэффициент конвективного теплообмена по результатам итерационного расчета для верхней поверхности корпуса равен 5, для нижней 8, для боковой 44. Коэффициент конвективного теплообмена для микроконтроллера равен 0,5. Перегрев корпуса составляет 7°С, поэтому его температуру указываем равной 27°С. Результирующее тепловое поле платы, полученное с помощью САПР Solid Edge после подстановки этих значений в параметры теплового анализа и его выполнения, можно наблюдать на рис. 8.

Самым нагретым элементом является микросхема Atmega16u2, ее нагрев составил 66,9 °C (рис.9). Полученная температура не превышает критичную для данного компонента (85 °C), что свидетельствует о работоспособности конструкции.

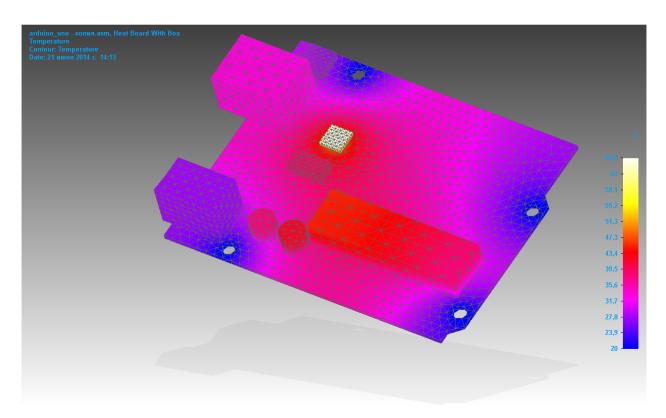


Рис. 8. Результаты теплового анализа устройства в корпусе

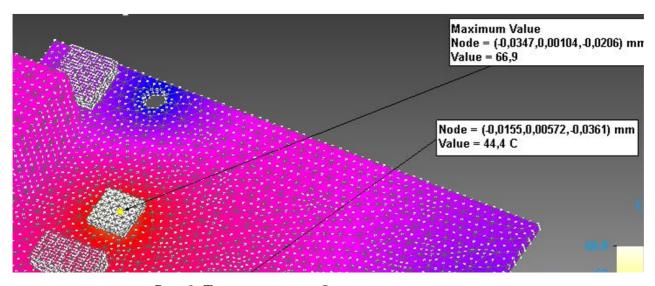


Рис. 9. Температура наиболее нагретого элемента

4.2 Механические воздействия

Выполняя анализ сборки, необходимо также учитывать реакцию печатной платы на механические воздействия, такие как 1) деформацию (прогиб) под воздействием статического нагружения под действием силы тяжести и 2) отклик на воздействие внешних вибрационных и ударных нагрузок.

Статическое нагружение под собственной тяжестью имеет значение в проектировании сборки, если она имеет в своем составе тяжелые компоненты, такие как трансформаторы, аккумуляторы и т.д., или плата относится к классу гибких или гибкожестких. Прогиб платы может привести к нежелательному касанию других плат или корпуса, особенно при дополнительном наложении вибрационных нагрузок.

Рассмотрены наиболее распространенные виды закрепления платы – защемление двух боковых граней и по 4 точкам.

Проводился расчет собственных частот платы в САПР SE и ручным методом. Сравнительные результаты представлены ниже.

	Vestiles
	N Plots
+	Mode 1, 4,098e+002 Hz
1	Mode 2, 5,518e+002 Hz
1	Mode 3, 8,823e+002 Hz
+	Mode 4, 1,222e+003 Hz

Рис. 10. Первые четыре резонансных частоты для платы, защемленной по двум граням, полученные в САПР Solid Edge

По формуле расчета собственной частоты для платы, закрепленной по двум боковым граням, получен следующий результат:

$$f_0=rac{1}{2\pi}rac{K_lpha}{a^2}\sqrt{rac{D}{M}ab}=400$$
 Гц

Это показывает, что анализ, проведенный в САПР (рис.10), соответствует теоретическим расчетам. Собственные частоты для платы, закрепленной в 4х точках, представлены на рис.11.

=	Plots
±	Mode 1, 2,604e+002 Hz
±	Mode 2, 4,969e+002 Hz
±	Mode 3, 5,604e+002 Hz
±	Mode 4, 6,222e+002 Hz

Рис. 11. Первые четыре резонансных частоты для платы, закрепленной в 4х точках, полученные в САПР Solid Edge

Алгоритм анализа сборки на механические воздействия в САПР Solid Edge ST6 представлен на рис. 12. Эпюры деформации платы и значения деформаций на первой резонансной частоте представлены на рис. 13 и рис. 14.

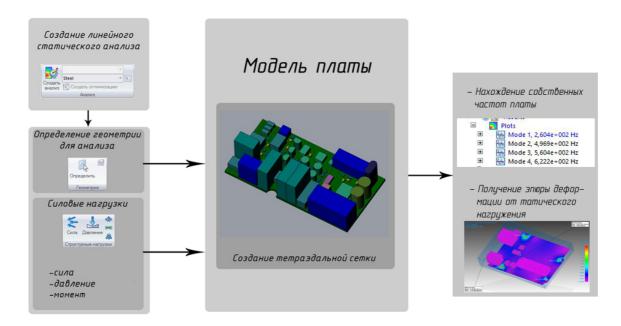


Рис. 12. Алгоритм анализа сборки на механические воздействия в CAПР Solid Edge ST6

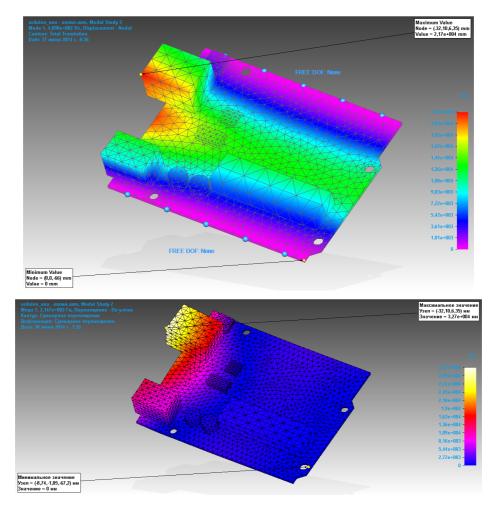


Рис. 14. Деформация платы, закрепленной в 4х точках, на первой резонансной частоте

Для расчета прогиба платы под собственной тяжестью сборка жестко закреплялась по внутренним поверхностям базовых отверстий, и в качестве нагрузки задавалась сила тяжести. Эпюра деформации платы под действием силы тяжести представлена на рис. 15.

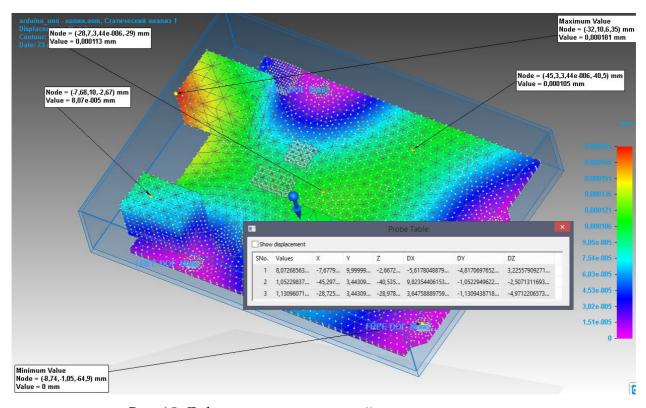


Рис. 15. Деформация платы под действием силы тяжести

Очевидно, что в силу незначительной величины деформации для конкретного примера расчет на прогиб не является существенным – изделие не имеет в своем составе массивных компонентов. Но в случаях гибких и гибко-жестких плат, а также сборок, сильно нагруженных крупными и тяжелыми компонентами, такими как радиатор и т.д., определение деформации при прогибе может представлять большую важность при проектировании изделия.

Заключение

В работе были разработаны и применены алгоритмы интеграции электронной САПР Altium Designer и механической САПР Solid Edge с помощью формата IDF и приложения Desktop EDA. Таким образом, продемонстрирован порядок проектирования, позволяющий конструкторам работать совместно и снижающий объем необходимых трудозатрат и ресурсов.

Также был разработан и применен алгоритм инженерного анализа в среде Solid Edge, позволивший смоделировать тепловые поля устройства, получить эпюры деформации и напряжений при модальном анализе и проверить реакцию платы на прогиб.

Для выявления достоверности проведенных анализов были проведены сравнительные теоретические расчеты. По итогам сравнения было установлено, что результаты, полученные на модели и в ручном расчете, близки по значениям. Вместе с тем, отмечено, что необходимость задания коэффициента с конвективное в явном виде затрудняет применение САПР SE для полноценного анализа тепловых режимов электронных модулей I уровня. Для более полного исследования тепловых режимов следует воспользоваться более САПР более высокого уровня, например, САПР NX.

Список литературы

- 1. Самойленко Е.А. Методика создания 3D-моделей путем передачи данных между ECAD и MCAD системами. М.: МГУПИ, 2009. 7 с.
- 2. Курносенко А.Е., Соловьев В.А., Арабов Д.И. Программные модули для организации совместного проектирования электронной и механической составляющих изделия в САПР Solid Edge/NX // Информационные технологии в проектировании и производстве. 2014. № 3. С. 12-15.
- 3. Шахнов В.А., Зинченко Л.А., Соловьев В.А., Курносенко А.Е. Основы проектирования в Solid Edge: Пособие по конструированию изделий в приборостроении. М.: ДМК Пресс, 2014. 272 с.