МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 620.186.5

Влияние низких температур отпуска на структуру и микротвердость сталей 35 и 40Х после высокоскоростного деформирующего резания

Варламова С.Б., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Материаловедение»

Дегтярева А.Г., соискатель Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Материаловедение»

Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Материаловедение»

Научный руководитель: Симонов В. Н. д.т.н, профессор Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана bauman@bmsturu

Актуальной проблемой в машиностроении является повышение надёжности узлов трения. К таким деталям машин предъявляются высокие требования по износостойкости трущихся поверхностей, а также высокой динамической прочности всего изделия. Метод деформирующего резания (ДР) может выступать альтернативой существующих технологий поверхностного упрочнения. Данный метод заключается в создании макрорельефа (единое ребро в виде непрерывной спирали) на наружных поверхностях обрабатываемого материала. Идея метода подробно описана в патенте 2044606 РФ [1] и статье [4].

Для исследования использовали образцы стали 35 и 40X с поверхностью, закаленной в процессе деформирующего резания. Методика подготовки образцов и схема измерения микротвердости описаны в работе [2]. Количество замеров твердости на каждом образце - 100.

По полученным данным в работе [3] было установлено, что при низком отпуске в стали 35, на кривой изменения микротвердости в зависимости от температуры отпуска, наблюдается увеличение микротвердости, по сравнению с исходным состоянием (после ДР). В связи с тем, что явных изменений в микроструктуре выявлено не было, провели более тщательное исследование по влиянию низких температур отпуска (от 100 °C до 300 °C с интервалом в 50 °C и выдержкой 40 минут) на структуру и твердость стали 35 и

40Х. Микроструктуры образцов сталей после деформирующего резания представлены на рис. 1.

Рис. 1. Микроструктура сталей 35 и 40Х, х500

На рис. 2 показана зависимость твердости сталей от температур низкого отпуска.

Рис. 2. Зависимость твердости стали после ДР от температур низкого отпуска:

Как видно из графика (см. рис. 2, а), твердость упрочненной при ДР поверхности стали 35 не изменяется до температуры отпуска 100°С, затем уменьшается при 150 °С HV 667±12 (после ДР) до HV 640±12, затем при отпуске 200 °С наблюдается явный пик с увеличением значений твердости до HV 684±12, далее идет плавное снижение.

На стали 40Х твердость сразу же начинает уменьшаться с HV 630±8 в исходном состоянии, до HV 606±8 при температуре отпуска 100 °C, затем значения твердости выравниваются с исходными и при температуре отпуска 200 °C составляют HV 627±10.

Для понимания происходящего процесса на исходных образцах и после обработки ДР и отпуска 200 °С провели исследования с помощью растровой микроскопии. На рис. 3 представлены результаты исследования образцов стали 35.

б)

Рис. 3. Структура стали 35: а) после обработки ДР; б) после обработки ДР и отпуска 200 °C

Как видно из рис. 3, результаты растровой микроскопии на стали 35 не выявили наличия дисперсных частиц, которые могли бы повлиять на увеличение твердости при отпуске 200 °C. Однако, при изучении снимков заметили интересную особенность: феррит по большей части концентрировался в свободной части ребра. Таким образом, можно сделать вывод о том, что температурное поле во время деформирующего резания распределялось неравномерно по ребру. Максимальная температура в процессе ДР была в прирезцовой части ребра, возможно, она достигала значений критической точки Ac₃ или даже превышала ее. Для подтверждения данного факта был проведен расчёт количества феррита в различных зонах рёбер. Расчёт проводился с помощью программного

обеспечения Siams. На рис. 4 схематично представлено температурное поле и количество феррита после упрочнения стали 35 с помощью ДР.

Рис. 4. Схема распределения феррита в ребре в стали 35

На рис. 5 представлены микроструктуры стали 40Х, полученные с помощью растровой микроскопии. Видно, что отличий между обработкой ДР и ДР+отпуск 200°С не наблюдается.

X5000

X3000

X9000

a)

Рис. 5. Снимки стали 40Х: а) после обработки деформирующим резанием; б) после обработки деформирующим резанием и отпуска 200 °C

Обратили внимание на то, что в стали 40Х есть отличия в распределении феррита в ребре, а именно, большая его часть находится не в свободной части ребра (как в стали 35), а в середине ребра. Таким образом, можно предположить, что максимальная температура во время ДР была как в прирезцовой, так и в свободной частях ребра. А это значит, что, температурное поле в стали 40Х во время обработки ДР было распределено иначе, нежели на стали 35. Возможно, это связано с различной теплопроводностью этих сталей.

На рис. 6 представлено температурное поле и схема распределения феррита в ребре стали 40Х, после упрочнения деформирующим резанием.

Рисунок 6. Схема распределения феррита в ребре в стали 40Х

Выводы:

- 1) Микротвердость сталей 35 и 40Х, закаленных в процессе ДР по-разному реагирует на температуры низкого отпуска. В стали 35 снижение твердости обнаруживается при 150 °C, а уже при 200 °C наблюдаем ее пик. В стали 40Х микротвердость начинает уменьшаться при температуре 100 °C, далее идет выравнивание твердости и при температуре отпуска 200 °C она равна исходной.
- Микроструктурных изменений в сталях 35 и 40Х при температурах низкого отпуска не выявлено.
- 3) По распределению остаточного феррита в ребре можно сделать вывод о том, что во время ДР температурное поле было неоднородным по ребру, в стали 35 оно максимально в прирезцовой и уменьшается к свободной части; а в стали 40Х максимально в прирезцовой и свободной частях, возможно, что в средней части ребра температура минимальна.

Список литературы

- Зубков Н.Н., Овчинников А.И. Способ получения поверхностей с чередующимися выступами и впадинами и инструмент для его реализации: пат. 2044606 Российская Федерация. 1994. Бюл. № 27. 32 с.
- 2. Варламова С.Б., Дегтярева А.Г., Попцов В.В. Влияние термической обработки на структуру и микротвердость стали 35 после обработки методом деформирующего резания // Молодежный научно-технический вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2013. № 9. Режим доступа: <u>http://sntbul.bmstu.ru/doc/618567.html/</u> (дата обращения 03.10.14).
- Дегтярева А.Г., Попцов В.В., Симонов В.Н., Васильев С.Г., Варламова С.Б. Формирование закаленных структур в стали 35 методом деформирующего резания // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. № 9. DOI: 10.7463/0914.0725672.
- Зубков Н.Н., Васильев С.Г. Повышение износостойкости деталей пар трения на основе метода деформирующего резания // Упрочняющие технологии и покрытия. 2013. № 8. С. 3-9.