__электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 629.78

Коррекция траектории полета космического аппарата к астероиду

Апофис

Чжао Ц., магистр Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Динамика и управление полетом ракет и космических аппаратов»

Научный руководитель: **Ивашкин В.В**., д.ф-м.н, профессор Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Динамика и управление полетом ракет и космических аппаратов» <u>kafsm3@sm.bmstu.ru</u>

1. Введение

B настояшее время актуальны исследования астероидов, В частности, сближающихся с Землей, например, астероида Апофис. Он может иметь несколько тесных сближений с Землей в текущем столетии, даже есть вероятность его столкновения с Землей. Это приводит к задаче исследования астероида с помощью космического аппарата [1]. Фактическая траектория КА всегда отличается от номинальной из-за ошибок исполнения маневров и ошибок навигации. Большая длительность межпланетных траекторий делает их весьма чувствительными к ошибкам в начальном положении и в величине и направлении начальной скорости. Это приводит к ошибкам подлета к цели и необходимости коррекции траектории КА. Поэтому актуальна задача коррекции траектории движения КА, обеспечивающей достижение астероида Апофис с высокой точностью по координатам и времени.

В работе исследуются две номинальные орбиты движения КА от Земли к Апофису, соответствующие экспедиции к астероиду с последующим возвращением к Земле и отличающиеся продолжительностью экспедиции и временем полета до астероида (122 сут. и 335 сут.). Исследуются характеристики корректирующих одноимпульсных маневров,

изменяющих положение КА в окрестности Апофиса. При этом рассмотрена трехпараметрическая коррекция - двух координат в картинной плоскости и времени полета.

2. Рассматриваемый класс коррекций орбиты КА

В работах [2-5] дана достаточно полная классификация коррекций межпланетных траекторий полета КА (табл. 1).

Таблица 1

Классификация способов коррекции	Коррекция может быть:
по продолжительности осуществления корректирующего импульса	дискретной импульсной ; непрерывной
по числу корректируемых параметров	Однопараметрической; двухпараметрической трехпараметрической
по числу независимых компонентов корректирующего импульса	Однокомпонентной; двухкомпонентной трехкомпонентной.
по числу включений двигатели	одноразовой; многоразовой

Классификация способов коррекций межпланетных траекторий полета КА

В соответствии с этой классификацией в настоящей работе рассмотрена импульсная двух - и трехпараметрическая коррекция. Причем на данном этапе исследуются характеристики одно - и двухразовой трехкомпонентной коррекции.

3. Алгоритм расчета коррекции траектории полета КА к Апофису

3.1. Алгоритм определения расчетной и отклоненных орбит КА

Траектория полета КА от Земли до Апофиса определяется интегрированием системы дифференциальные уравнения (ДУ) движения КА. Дифференциальные уравнения (ДУ) движения КА в геоцентрической геоэкваториальной невращающейся прямоугольной системе координат на эпоху J2000 записываются в форме [3, 4]:

$$\frac{d^{2}\mathbf{r}}{dt^{2}} = -\frac{\mu}{r^{3}}\mathbf{r} + \sum_{j}\mu_{j}\left\{\frac{\mathbf{r}_{j}-\mathbf{r}}{\left|\mathbf{r}-\mathbf{r}_{j}\right|^{3}} - \frac{\mathbf{r}_{j}}{\left|\mathbf{r}_{j}\right|^{3}}\right\} + \mathbf{F}_{(c:\mathcal{H})},\tag{1}$$

Молодежный научно-технический вестник ФС77-51038, ISSN 2307-0609

где **r** - радиус-вектор KA; **r**_j - радиус-вектор возмущающего тела (Солнца, Луны, планет); μ , μ_j - гравитационные параметры Земли и возмущающих тел; **F**_(сж) - возмущение от сжатия Земли.

Начальные условия интегрирования расчетной орбиты:

$$\mathbf{X}_{\mathbf{0}} = [x_0, y_0, z_0, V_{x0}, V_{y0}, V_{z0}, t_0],$$

взяты из работы [6]. В конечный момент КА подлетает к астероиду Апофис. Для интегрирования использован метод Рунге-Кутты 8-го порядка с автоматическом выбором шага, при этом получается ошибка в конечных координатах менее 1 метра.

3.2. Расчет отклоненных траекторий

Для оценки характеристик коррекции сделан расчет отклонений в конце полета из-за ошибок координат и компонентов скорости в начале пассивного полета КА. Для этого сделан расчет 6 отклоненных траекторий (называем их орбиты 1-6), соответствующих единичным частным вариациям в начальных данных. При этом для орбиты 1: $\Delta x_0 = \sigma x_0 = 1$ км. Для орбиты 2: $\Delta y_0 = 1$ км. Для орбиты 3: $\Delta z_0 = 1$ км. Для орбиты 4: $\Delta V x_0 = 1$ м/с. Для орбиты 5: $\Delta V y_0 = 1$ м/с. Для орбиты 6: $\Delta V z_0 = 1$ м/с. Рассчитав это семейство траекторий, мы определим отклонения в конце полета, вызванные начальными ошибками и, приближенно, матрицу производных от отклонений конечных параметров по начальным M_{0f} .

Это позволяет также определить ковариационную матрицу конечных отклонений параметров по заданной матрице начальных ошибок [7].

3.3 Картинная плоскость и связанная с ней система координат

Картинная плоскость проходит через центр планеты-цели перпендикулярно вектору планетоцентрической скорости КА (скорости КА относительно планеты - V_{oTH}) на номинальной траектории в конечный момент. С этой плоскостью связывается система координат Р ξ η ζ . Начало этой системы координат - центр масс планеты Р; Ось Р ζ направлена вдоль вектора скорости КА относительно планеты-цели V_{oTH} ; оси Р ξ и Р η лежат в картинной плоскости и плоскости

гелиоцентрической траектории КА; ось Р η направлена вверх, в полусферу, определенную направлением вектора кинетического момента траектории **K**₀ [2, 3], см. рис.1. δ **r**_f

Рис. 1. Картинная плоскость, и система координат, связанная с этой плоскостью

Орты этой системы координат определяются соотношениями:

$$\boldsymbol{\xi}_{(x,y,z)}^{0} = \frac{\mathbf{K}_{(x,y,z)}^{0} \times \mathbf{V}_{ODHI(x,y,z)}}{\left|\mathbf{K}_{(x,y,z)}^{0} \times \mathbf{V}_{ODHI(x,y,z)}\right|}; \boldsymbol{\zeta}_{(x,y,z)}^{0} = \frac{\mathbf{V}_{ODHI(x,y,z)}}{\left|\mathbf{V}_{ODHI(x,y,z)}\right|}; \boldsymbol{\eta}_{(x,y,z)}^{0} = \boldsymbol{\zeta}_{(x,y,z)}^{0} \times \boldsymbol{\xi}_{(x,y,z)}^{0}$$
(2)

3.4 Матрица изохронных производных

Производные в орбитальной системе координат используются при оценке влияния отклонений компонент вектора скорости в момент коррекции t_c на отклонения координат в конечный момент t_f . Матрица изохронных производных в орбитальной системе координат M_{op6} приведена в [2, 3]. При ее вычислении используем параметры гелиоцентрической орбиты КА. Для перехода к картинной плоскости используем выражения для ортов картинной плоскости в орбитальной СК. Это сделано двумя способами. В первом используем прямые формулы [2]:

$$\begin{bmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \\ \boldsymbol{\zeta} \end{bmatrix} = \begin{bmatrix} \sin \theta_{\boldsymbol{\xi}} & \cos \theta_{\boldsymbol{\xi}} & 0 \\ -\cos i_{\boldsymbol{\kappa},n} \cos \theta_{\boldsymbol{\xi}} & \cos i_{\boldsymbol{\kappa},n} \sin \theta_{\boldsymbol{\xi}} & \sin i_{\boldsymbol{\kappa},n} \\ \sin i_{\boldsymbol{\kappa},n} \cos \theta_{\boldsymbol{\xi}} & -\sin i_{\boldsymbol{\kappa},n} \sin \theta_{\boldsymbol{\xi}} & \cos i_{\boldsymbol{\kappa},n} \end{bmatrix} \begin{bmatrix} \boldsymbol{r}_{\boldsymbol{r}} \\ \boldsymbol{r}_{\boldsymbol{u}} \\ \boldsymbol{r}_{\boldsymbol{b}} \end{bmatrix}$$
(3a)

Углы θ_{ξ} и $i_{\kappa,n}$ определены в [2]. Во втором методе используем формулы (2) для орт:

$$\begin{bmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \\ \boldsymbol{\zeta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\xi}^{0}_{(x,y,z)} \\ \boldsymbol{\eta}^{0}_{(x,y,z)} \\ \boldsymbol{\zeta}^{0}_{(x,y,z)} \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z} \end{bmatrix}$$
(3b)

Молодежный научно-технический вестник ФС77-51038, ISSN 2307-0609

На основе этого и матрицы M_{0f} отклонений, полученной по 6 орбитам (пп. 3.2) получим матрицу производных от конечных координат в картинной плоскости по начальным отклонениям:

$$M_{1} = \begin{bmatrix} \frac{\partial \xi}{\partial x_{0}} & \frac{\partial \xi}{\partial y_{0}} & \frac{\partial \xi}{\partial z_{0}} & \frac{\partial \xi}{\partial V_{x0}} & \frac{\partial \xi}{\partial V_{y0}} & \frac{\partial \xi}{\partial V_{z0}} \\ \frac{\partial \eta}{\partial x_{0}} & \frac{\partial \eta}{\partial y_{0}} & \frac{\partial \eta}{\partial z_{0}} & \frac{\partial \eta}{\partial V_{x0}} & \frac{\partial \eta}{\partial V_{y0}} & \frac{\partial \eta}{\partial V_{z0}} \\ \frac{\partial \zeta}{\partial x_{0}} & \frac{\partial \zeta}{\partial y_{0}} & \frac{\partial \zeta}{\partial z_{0}} & \frac{\partial \zeta}{\partial V_{x0}} & \frac{\partial \zeta}{\partial V_{y0}} & \frac{\partial \zeta}{\partial V_{z0}} \end{bmatrix}.$$
(4)

Аналогично, но используя матрицу изохронных производных, получаем матрицу производных от координат в картинной плоскости по компонентам импульса скорости в орбитальной системе координат:

$$M_{k} = \begin{bmatrix} \frac{\partial \xi}{\partial V_{rc}} & \frac{\partial \xi}{\partial V_{uc}} & \frac{\partial \xi}{\partial V_{bc}} \\ \frac{\partial \eta}{\partial V_{rc}} & \frac{\partial \eta}{\partial V_{uc}} & \frac{\partial \eta}{\partial V_{bc}} \\ \frac{\partial \zeta}{\partial V_{rc}} & \frac{\partial \zeta}{\partial V_{uc}} & \frac{\partial \zeta}{\partial V_{bc}} \end{bmatrix}$$
(5)

3.5 Расчет импульса скорости двухпараметрической коррекции координат КА в картинной плоскости

Первые две строки матрицы Мк определяют градиенты двух корректируемых параметров в точке коррекции (5):

$$\mathbf{A} = grad\xi = \frac{\partial\xi}{\partial V_r} \mathbf{r}^{\mathbf{0}} + \frac{\partial\xi}{\partial V_u} \mathbf{u}^0 + \frac{\partial\xi}{\partial V_b} \mathbf{b}^0; \quad \mathbf{B} = grad\eta = \frac{\partial\eta}{\partial V_r} \mathbf{r}^{\mathbf{0}} + \frac{\partial\eta}{\partial V_u} \mathbf{u}^0 + \frac{\partial\eta}{\partial V_b} \mathbf{b}^0$$
(6)

Пусть отклонение фактической траектории от расчетной траектории в конце полета определяется координатами $\Delta\xi$ и $\Delta\eta$ в картинной плоскости. Тогда минимальный по величине импульс скорости двухпараметрической коррекции сообщается в плоскости оптимальной коррекции и определяется формулой [2, 3]:

http://sntbul.bmstu.ru/doc/779041.html

$$\Delta \mathbf{V}_{\mathbf{k}(\mathbf{r},\mathbf{u},\mathbf{b})} = \frac{\mathbf{B} \times \mathbf{A} \times \mathbf{B}}{\left|\mathbf{A} \times \mathbf{B}\right|^{2}} (-\Delta \xi) + \frac{\mathbf{A} \times \mathbf{B} \times \mathbf{A}}{\left|\mathbf{A} \times \mathbf{B}\right|^{2}} (-\Delta \eta).$$
(7)

3.6 Расчет импульса скорости коррекции времени полета

Градиент корректируемого отклонения времени полета определяется третьей строкой матрицы Мк:

$$\mathbf{C}' = \operatorname{grad} \zeta = \frac{\partial \zeta}{\partial V_{rc}} \mathbf{r}^{\mathbf{0}} + \frac{\partial \zeta}{\partial V_{uc}} \mathbf{u}^{0} + \frac{\partial \zeta}{\partial V_{bc}} \mathbf{b}^{\mathbf{0}}; \mathbf{C} = \operatorname{grad}(\Delta T) = \operatorname{grad}(-\frac{\zeta}{V_{\infty 2}}) = -\frac{\operatorname{grad}\zeta}{V_{\infty 2}} = -\frac{\mathbf{C}'}{V_{\infty 2}}$$
$$\Delta T = -\frac{\Delta \zeta}{V_{omu}}.$$
(8)

Если вынужденная вариация времени полета при коррекции отклонений координат $\delta T_k = \Delta V_k \cdot C$ превышает заданную точность коррекции времени, тогда суммарное корректируемое отклонение времени полета

$$\delta T = \Delta T + \delta T_k, \tag{9}$$

и импульс скорости коррекции времени полета определяется формулой [2, 3]:

$$\Delta \mathbf{V}_{\mathbf{V}_{(\mathbf{r},\mathbf{u},\mathbf{b})}} = -\frac{\mathbf{A} \times \mathbf{B}}{(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}} \,\delta T \,. \tag{10}$$

3.7 Расчет суммарного импульса скорости трёхпараметрической коррекции

Суммарный импульс скорости трёхпараметрической коррекции координат в картинной плоскости и времени полета определяется формулой [2, 3, 8]:

$$\Delta \mathbf{V}_{C(\mathbf{r},\mathbf{u},\mathbf{b})} = \Delta \mathbf{V}_{\mathbf{K}(\mathbf{r},\mathbf{u},\mathbf{b})} + \Delta \mathbf{V}_{\mathbf{V}(\mathbf{r},\mathbf{u},\mathbf{b})}$$
(11a)

$$\Delta \mathbf{V}_{\mathbf{C}(\mathbf{r},\mathbf{u},\mathbf{b})} = \frac{\mathbf{B} \times \mathbf{C}}{(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}} (-\Delta \boldsymbol{\xi}) + \frac{\mathbf{C} \times \mathbf{A}}{(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}} (-\Delta \boldsymbol{\eta}) + \frac{\mathbf{A} \times \mathbf{B}}{(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}} (-\Delta T).$$
(11b)

3.8 Статистическая характеристика коррекции -- эллипсоид импульса скорости

коррекции

Кроме того, определяется ковариационная матрица распределения компонент импульса скорости коррекции, определяемая матрицей $K_{\bar{x}0}$ ошибок начальных данных. При этом задавалось, что средне-квадратичные отклонения начальных координат 1 км, а средне-квадратичные отклонения начальных скоростей 1 м /с.

Для каждой из указанных выше 6 отклоненных орбит получим соответственный импульс скорости трехпараметрической коррекции, методом в пп. 3.5-3.7. Так, для отклоненной орбиты 1 с начальным отклонением $\Delta x_0=1$ км получим суммарный импульс скорости трехпараметрической коррекции в гелиоцентрической системе координат ΔV_{c1} ($\Delta V_{c1x}, \Delta V_{c1y}, \Delta V_{c1z}$). Аналогично получим импульсы $\Delta V_{c2} - \Delta V_{c6}$. Тогда получим корректирующую матрицу производных

$$\frac{\partial \overline{Vc}}{\partial \overline{x}_{0}} = \begin{bmatrix} \Delta Vc_{1x} & \Delta Vc_{2x} & \Delta Vc_{3x} & \Delta Vc_{4x} & \Delta Vc_{5x} & \Delta Vc_{6x} \\ \Delta Vc_{1y} & \Delta Vc_{2y} & \Delta Vc_{3y} & \Delta Vc_{4y} & \Delta Vc_{5y} & \Delta Vc_{6y} \\ \Delta Vc_{1z} & \Delta Vc_{2z} & \Delta Vc_{3z} & \Delta Vc_{4z} & \Delta Vc_{5z} & \Delta Vc_{6z} \end{bmatrix}.$$
(12)

Отсюда получим ковариационную матрицу для компонентов импульса скорости коррекции из-за ошибок выведения [7, 8]

$$K_{V_{c}1} = \left[\frac{\partial \overline{Vc}}{\partial \overline{x}_{0}}\right]_{3\times 6} * \left[K_{\overline{x}_{0}}\right]_{6\times 6} * \left[\frac{\partial \overline{Vc}}{\partial \overline{x}_{0}}\right]_{6\times 3}^{T} , \qquad (13)$$

где $K_{\bar{x}0}$ - Корреляционная матрица начальных отклонений. Она имеет $k_{ii}=1$ на диагонали и нули вне ее, $k_{ij}=0$, $i\neq j$. Вычислим собственные значения данной ковариационной матрицы [7]:

$$\left|K_{V_{c^{1}}} - E\lambda\right| = 0, \tag{14}$$

и получим полуоси эллипсоида импульса скорости коррекции

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sqrt{\lambda_{\max}} \\ \sqrt{\lambda_{\min}} \\ \sqrt{\lambda_{\min}} \end{bmatrix},$$
(15)

где *a* - большая полуось эллипсоида; *b* - средняя полуось эллипсоида; *c* - малая полуось эллипсоида. Полагаем приближенно, что расчетная статистическая величина импульса скорости коррекции (в смысле σ) равна большой полуоси эллипсоида [9]. Для определения его максимальной величины (3σ) надо взять утроенную величину полуоси *a*.

3.9 Статистическая характеристика конечных отклонений - Эллипсоид отклонений координат КА в конце траектории

Для каждой из указанных выше 6 отклоненных орбит получим соответственное отклонение координат КА в конце траектории, методом в пп. 3.4. Так, для отклоненной орбиты 1 с начальным отклонением $\Delta x_0=1$ км получим отклонение координат КА в конце траектории $\Delta \xi_1$ ($\Delta \xi_1, \Delta \eta_1, \Delta \zeta_1$). Аналогично получим отклонении $\Delta \xi_2-\Delta \xi_6$. Тогда получим матрицу производных от координат в картинной плоскости (4):

$$\frac{\partial \boldsymbol{\xi}}{\partial \overline{\mathbf{x}}_{0}} = M_{1} = \begin{bmatrix} \Delta \boldsymbol{\xi}_{1} & \Delta \boldsymbol{\xi}_{2} & \Delta \boldsymbol{\xi}_{3} & \Delta \boldsymbol{\xi}_{4} & \Delta \boldsymbol{\xi}_{5} & \Delta \boldsymbol{\xi}_{6} \\ \Delta \boldsymbol{\eta}_{1} & \Delta \boldsymbol{\eta}_{2} & \Delta \boldsymbol{\eta}_{3} & \Delta \boldsymbol{\eta}_{4} & \Delta \boldsymbol{\eta}_{5} & \Delta \boldsymbol{\eta}_{6} \\ \Delta \boldsymbol{\zeta}_{1} & \Delta \boldsymbol{\zeta}_{2} & \Delta \boldsymbol{\zeta}_{3} & \Delta \boldsymbol{\zeta}_{4} & \Delta \boldsymbol{\zeta}_{5} & \Delta \boldsymbol{\zeta}_{6} \end{bmatrix}.$$
(16)

Отсюда получим ковариационную матрицу для корректируемых параметров в конечный момент в картинной плоскости из-за ошибок выведения [7, 8]

$$K_{\xi_1} = \left[\frac{\partial \xi}{\partial \mathbf{\bar{x}}_0}\right]_{3\times 6} * \left[K_{\overline{x}_0}\right]_{6\times 6} * \left[\frac{\partial \xi}{\partial \mathbf{\bar{x}}_0}\right]_{6\times 3}^T$$
(17)

Здесь $K_{\bar{x}0}$ - Корреляционная матрица начальных отклонений. Она имеет k_{ii}=1 на диагонали и нули вне ее, k_{ij} =0, *i≠j*. Вычислим собственные значения данной ковариационной матрицы [7]:

$$\left|K_{\xi_1} - E\lambda\right| = 0, \tag{18}$$

и получим полуоси эллипсоида отклонений координат КА в конце траектории:

Молодежный научно-технический вестник ФС77-51038, ISSN 2307-0609

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sqrt{\lambda_{\max}} \\ \sqrt{\lambda_{\min}} \\ \sqrt{\lambda_{\min}} \end{bmatrix},$$
(19)

где *а* - большая полуось эллипсоида; *b* - средняя полуось эллипсоида; *с* - малая полуось эллипсоида.

3.10 Расчет второй коррекции

Вторая коррекция корректирует ошибки выполнения первой коррекции и ошибки навигации перед первой коррекцией. На данном этапе работы рассмотрена только ошибка выполнения первой коррекции.

Допустим, $\Delta \mathbf{V}_{cl(r,u,b)} = [\Delta V_{cl,r}, \Delta V_{cl,u}, \Delta V_{cl,b}]$ - это импульс скорости первой коррекции

в орбитальной системе координат. Ошибка выполнения первой коррекции имеет две части: ошибка по величине импульса скорости первой коррекции и ошибка по направлению импульса скорости первой коррекции [10], рис. 2.

Рис. 2. Ошибки первой коррекции

1) $\delta_1 \Delta V_{c1}$ - ошибка по величине импульса скорости первой коррекции. Она направлена вдоль импульса скорости первой коррекции.

$$\boldsymbol{\delta}_{1} \Delta \mathbf{V}_{c1} = \begin{bmatrix} \boldsymbol{\delta}_{1} \Delta \boldsymbol{V}_{c1,r} \\ \boldsymbol{\delta}_{1} \Delta \boldsymbol{V}_{c1,u} \\ \boldsymbol{\delta}_{1} \Delta \boldsymbol{V}_{c1,b} \end{bmatrix} \approx \boldsymbol{\varepsilon}_{1} \cdot \Delta \mathbf{V}_{c1} = \boldsymbol{\varepsilon}_{1} \cdot \begin{bmatrix} \Delta \boldsymbol{V}_{c1,r} \\ \Delta \boldsymbol{V}_{c1,u} \\ \Delta \boldsymbol{V}_{c1,b} \end{bmatrix}$$
(20)

где принято, что коэффициент $\varepsilon_1 \approx 0.06$ (3 σ)

2) $\delta_2 \Delta V_{c1}$ - ошибка по направлению импульса скорости первой коррекции.

$$\boldsymbol{\delta}_{2} \boldsymbol{\Delta} \mathbf{V}_{c1} = \boldsymbol{\delta}_{2} \boldsymbol{\Delta} V_{c1,x} \cdot \mathbf{x}^{0} + \boldsymbol{\delta}_{2} \boldsymbol{\Delta} V_{c1,y} \cdot \mathbf{y}^{0}$$
(21)

http://sntbul.bmstu.ru/doc/779041.html

Где: $\delta_2 \Delta V_{c1,x}, \delta_2 \Delta V_{c1,y}$ - компоненты ошибки $\delta_2 \Delta V_1$ в системе координат, связанной с первой коррекцией: ось \mathbf{z}^0 вдоль направления первой коррекции, оси $\mathbf{x}^0, \mathbf{y}^0$ - орты, лежащие в плоскости, перпендикулярной первому импульсу скорости коррекции ΔV_{c1} . По величине, ошибка $\delta_2 \Delta V_{c1}$ равна: $\delta_2 \Delta V_{c1} \approx \varepsilon_2 \cdot \Delta V_{c1}$, а по направлению она перпендикулярна первому импульсу скорости коррекции ΔVc_1 . где коэффициент $\varepsilon_2 \approx 0.06$ (3 σ). Направление ошибки $\delta_2 \Delta V_{c1}$ неопределенное. Поэтому в расчете ошибки $\delta_2 \Delta V_{c1}$, мы возьмем один из возможных вариантов.

Тогда суммарная ошибка первой коррекции будет:

$$\delta \Delta \mathbf{V}_{c1} = \boldsymbol{\delta}_{1} \Delta \mathbf{V}_{c1} + \boldsymbol{\delta}_{2} \Delta \mathbf{V}_{c1} = \begin{bmatrix} \delta_{1} \Delta V_{c1,r} \\ \delta_{1} \Delta V_{c1,u} \\ \delta_{1} \Delta V_{c1,b} \end{bmatrix} + \begin{bmatrix} \delta_{2} \Delta V_{c1,r} \\ \delta_{2} \Delta V_{c1,u} \\ \delta_{2} \Delta V_{c1,b} \end{bmatrix}$$
(22)

Это суммарная ошибка приводит к новому отклонению траектории в картинной плоскости в конечный момент(пп. 3.4.).

$$\boldsymbol{\delta}\boldsymbol{\Delta}\boldsymbol{\xi}_{2} = \begin{bmatrix} \boldsymbol{\delta}\boldsymbol{\Delta}\boldsymbol{\xi}_{2} \\ \boldsymbol{\delta}\boldsymbol{\Delta}\boldsymbol{\eta}_{2} \\ \boldsymbol{\delta}\boldsymbol{\Delta}\boldsymbol{\zeta}_{2} \end{bmatrix}$$
(23)

Для отклонения - $\delta\Delta\xi_2$ =[- $\delta\Delta\xi_2$, - $\delta\Delta\eta_2$, - $\delta\Delta\zeta_2$] получим, аналогично (11б, 8), импульс

скорости второй коррекции для трехпараметрического случая:

$$\Delta \mathbf{V}_{c2} = \begin{bmatrix} \Delta V_{c2,r} \\ \Delta V_{c2,u} \\ \Delta V_{c2,b} \end{bmatrix}$$
(24)

4. Численный анализ коррекции

В работе рассмотрены две траектории:

время полета от Земли до Апофиса по траектории 1 составляет около 122 сут.

время полета от Земли до Апофиса по траектории 2 составляет около 335 сут.

4.1 Численный анализ коррекции для траектории 1

Приняты следующие начальные условия интегрирования расчетной орбиты [6]:

(1). начальный момент полета: $t_0 = 2459234.92535174$ юлиан. сут. (20-1-2021);

(2). начальные радиус-вектор и вектор скорости КА в геоцентрической системе координат:

$$R_{0(x,y,z)} = \begin{bmatrix} 2525.38202221566\\ -5980.87628916477\\ -1335.21554029636 \end{bmatrix}, km; V_{0(x,y,z)} = \begin{bmatrix} 7.47203371121015\\ 1.21665541961922\\ 8.78636105382057 \end{bmatrix}, km / c.$$

(3). Конечное время полета: t₂=2459357.5 юлиан. сут. (23-5-2021). Время полета от Земли
 до Апофиса составляет около 122 сут. На рис. 3. [6] приведена орбита полета к Апофису.

Рис. 3. Орбиты Земли, Апофиса и траектория 1 космического аппарата в гелиоцентрической системе координат

Расчет коррекции траектории полета КА выполнен для нескольких моментов коррекции. Сделаны две группы расчетов.

В первом случае были заданы отклонения корректируемых параметров в картинной плоскости:

Таблица 2

Отклонения корректируемых параметров в картинной плоскости

Δξ, км	Δη, км	Δζ, км
-4536.684	26102.967	1501.324

Для этого случая, на рис. 4. приведены результаты расчетов импульса скорости коррекции: ΔVк - импульс скорости коррекции координат КА в картинной плоскости; ΔVv - импульс скорости коррекции времени полета КА от Земли к астероиду Апофис; ΔVc - суммарный импульс скорости трехпараметрической коррекции. Расчет сделан для нескольких моментов коррекции: $t_c = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110$ сут. (от начального момента пассивного полета).

Во втором случае сделан статистический анализ коррекции. Для этого случая на рис. 4. приведены:

а) большая полуось эллипсоида вектора скорости коррекции *a*, она дает несколько заниженную оценку случайной величины импульса скорости коррекции ΔVcσ1;

b) $\Delta V c \sigma = \sqrt{a^2 + b^2 + c^2}$, м/с - несколько завышенная оценка случайной величины импульса скорости коррекции, соответствующей среднеквадратичным отклонениям ошибок, здесь *b* - средняя полуось эллипсоида импульса скорости коррекции. Аккуратная оценка случайной величины импульса скорости коррекции лежит между ними [9]: $\Delta V c \sigma 1 < \Delta V c \sigma 2 < \Delta V c \sigma$. Эти кривые очень близки друг к другу, и оценку импульса скорости коррекции можно делать в данном случае по большой полуоси *a*.

Рис. 4. Результаты расчета величины импульса скорости трехпараметрической коррекции траектории полета КА в зависимости от времени коррекции для двух случаев анализа

Молодежный научно-технический вестник ФС77-51038, ISSN 2307-0609

Для 6 отклоненных орбит приведем результаты расчета отклонений координат КА от расчетных в системе координат, связанной с картинной плоскостью в конечный момент полета. В табл. 3. приведены эти отклонения в картинной плоскости, вызванные начальными ошибками.

Таблица З

плоскостью, в конечный момент полета, для о отклоненных оройт							
Начальное отклонение		Δx_0	Δy_0	Δz_0	$\Delta V x_0$	ΔVy_0	ΔVz_0
		=1км	=1км	=1км	=1м/с	=1м/с	=1м/с
Отклонения	Δξ,км	-2562	4914	-6726	-5959	6082	777
координат КА	Δη,κм	5867	-18096	3981	17406	-2406	12819
	Δζ,км	9287	-18925	1167	18405	-2733	16171

Отклонения координат от расчетных в системе координат, связанной с картинной плоскостью, в конечный момент полета, для 6 отклоненных орбит

Приведем соответствующие статистические характеристики отклонений, вызванных начальными ошибками - Эллипсоид отклонений координат КА в конце траектории. Он приведен на рис. 5. - в системе координат, связанной с главными осями эллипсоида. Величины полуосей этого эллипсоида (1 σ - для среднеквадратичных отклонений): большая полуось *a* = 44231 км; средняя полуось *b* = 9510 км ; малая полуось *c* = 2566 км.

Рис. 5. Эллипсоид отклонений координат КА в конце траектории

Для отклонений, приведенных в табл. 3. вычислены трехпараметрические коррекции траектории полета КА для момента коррекции $t_c = 20$ сут. от начального момента полета. Они приведены в табл. 4.

Таблица 4

Импульс скорости трехпараметрической коррекции траектории полета КА в орбитальной

Номер	начальное	Импульс	скорости кој	орекции
орбиты	ы отклонение	ΔVк, м/с	ΔVv, м/с	ΔVc , m/c
орбита 1	∆х ₀ =1км	0.387	2.130	2.165
орбита 2	Δу ₀ =1км	1.298	4.638	4.816
орбита 3	$\Delta z_0 = 1$ км	0.803	0.798	1.132
орбита 4	$\Delta V_{x0}\!\!=\!\!1\text{m/c}$	1.191	4.564	4.716
орбита 5	ΔV _{y0} =1м/с	0.787	0.967	1.246

системе координат (момент коррекции $t_c = 20$ сут.)

орбита б	ΔV_{z0} =1м/c	1.331	3.542	3.783

Для этих отклонений получим статистические характеристики коррекции эллипсоид импульса скорости коррекции. Для момента коррекции $t_c = 20$ сут. он приведен на рис. 6. - в системе координат, связанной с главными осями эллипсоида. Его параметры, величины полуосей этого эллипсоида (1 σ - для среднеквадратичных отклонений): большая полуось a = 8.081 м/с; средняя полуось b = 1.400 м/с; малая полуось c = 0.177 м/с.

Рис. 6. Эллипсоид импульса скорости коррекции в момент коррекции $t_c = 20$ сут.

Величины полуосей эллипсоидов импульса скорости коррекции для моментов коррекции: $t_c = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110$ сут. приведены в табл. 5.

Таблица	5
---------	---

	2		5 1	11
Время коррекции	<i>a</i> , m/c	<i>b</i> , m/c	<i>c</i> , m/c	$\Delta \mathrm{Vc}\boldsymbol{\sigma} = \sqrt{a^2 + b^2 + c^2},\mathrm{m/c}$
10	8.31	1.32	0.15	8.42
20	8.08	1.40	0.18	8.202
30	8.06	1.49	0.21	8.198
40	8.23	1.62	0.25	8.40
50	8.65	1.79	0.30	8.84
60	9.37	2.02	0.38	9.59
70	10.56	2.34	0.48	10.83
80	12.53	2.81	0.62	12.86
90	15.97	3.57	0.85	16.39
100	22.76	5.01	1.27	23.34
110	53.46	8.574	2.515	54.20

Величины полуосей эллипсоидов импульса скорости коррекции

4.2 Численный анализ коррекции для траектории 2.

Для этой траектории приняты следующие начальные условия для расчетной орбиты [6]:

- 1) начальнй момент полета: $t_0 = 2458623.46687741$ юлиан. сут. (19-5-2019);
- 2) начальные радиус-вектор и вектор скорости КА в геоцентрической системе координат:

$$R_{0(x,y,z)} = \begin{bmatrix} -5885.425757\\ -1978.233944\\ -2319.602165 \end{bmatrix}, km V_{0(x,y,z)} = \begin{bmatrix} -0.41361983\\ -7.94829632\\ 7.828031344 \end{bmatrix}, km / c$$

3) Конечное время полета: $t_2 = 2458962.5$ юлиан. сут.и (23-4-2020).

Время полета от Земли до Апофиса составляет около 335 сут. . На рис. 7. [6] приведена орбита полета к Апофису.

Рис. 7. Орбиты Земли, Апофиса и траектория 2 космического аппарата в гелиоцентрической системе координат

Для 6 отклоненных орбит проведем расчет отклонений координат КА от расчетных в системе координат, связанной с картинной плоскостью в конечный момент полета. В табл. 6. приведены эти отклонения в картинной плоскости, вызванные начальными ошибками.

Таблица б

		- ,				- r -	
Начальн	oe	Δx_0	Δy_0	Δz_0	$\Delta V x_0$	$\Delta V y_0$	ΔVz_0
отклонен	ие	=1км	=1км	=1км	=1м/с	=1м/с	=1м/с
Отклонения	Δξ,км	15085.1	5351.6	7669.4	170.9	14777.7	-22818.9
КА	Δη,κм	97241.4	26722.6	31036.7	6217.2	92074.3	-90135.5
	Δζ,км	253941.6	62821.2	78728.6	11950.2	238187.9	-233348.3

Отклонения координат от расчетных в системе координат, связанной с картинной плоскостью, в конечный момент полета, для 6 отклоненных орбит

Приведем соответствующие статистические характеристики коррекции - эллипсоид отклонений координат КА в конце траектории . Он указан на рис. 8. - в системе координат, связанной с главными осями эллипсоида.

Величины полуосей этого эллипсоида рассеивания конечных отклонений (1 σ - для среднеквадратичных отклонений): большая полуось *a* = 463434.5978км; средняя полуось *b* = 3077.3460 км ; малая полуось *c* = 2422.0895 км.

Рис. 8. Эллипсоид отклонений координат КА в конце траектории

Для отклонений в Табл.6 вычислены трехпараметрические коррекции траектории полета КА в орбитальной системе координат в момент коррекции *t*_c =15 сут. от начального момента полета. Они приведены в табл. 7.

Таблица 7

Импульс скорости трехпараметрической коррекции траектории полета КА в орбитальной системе координат (момент коррекции *t*_c =15 сут.)

Номер	начальное	Импульс	скорости кој	орекции
орбиты	ты отклонение	ΔVк, м/с	ΔVv, м/с	ΔVc , m/c
Орбита 1	Δх ₀ =1км	19.15	26.49	32.69
Орбита 2	Δу ₀ =1км	5.19	6.17	8.06
орбита 3	Δz ₀ =1км	5.90	7.86	9.83

орбита 4	ΔV_{x0} =1m/c	1.30	1.15	1.74
орбита 5	ΔV_{y0} =1м/с	18.10	24.71	30.63
орбита б	ΔV _{z0} =1м/с	17.30	23.59	29.25

Приведем соответствующие статистические характеристики коррекции эллипсоид рассеивания компонент импульса скорости коррекции. Он дан на рис. 9. - в системе координат, связанной с главными осями эллипсоида. Величины полуосей этого эллипсоида (1 σ - для среднеквадратичных отклонений): большая полуось *a* = 55.013 м/с; средняя полуось *b* = 0.692 м/с; малая полуось *c* = 0.054 м/с.

Рис. 9. Эллипсоид импульса скорости коррекции в момент коррекции $t_c = 15$ сут.

Величины полуосей эллипсоидов импульса скорости коррекции в моменты коррекции: $t_c = 15, 40, 65, 90, 115, 140, 165, 190, 215, 240, 265, 290, 325 сут. от начального момента полета приведены в табл. 8.$

Таблица 8	3
-----------	---

	5		1	11 .
момент коррекции	<i>a</i> , m/c	<i>b</i> , m/c	<i>c</i> , m/c	$\Delta \mathrm{Vc}\sigma = \sqrt{a^2 + b^2 + c^2},\mathrm{m}$
15	55.014	0.692	0.055	55.018
40	43.125	0.731	0.059	43.131
65	33.723	0.324	0.091	33.725
90	31.721	0.261	0.123	31.722
115	32.057	0.243	0.158	32.058
140	33.771	0.246	0.195	33.772
165	36.732	0.275	0.229	36.734
190	41.197	0.336	0.258	41.199
215	47.846	0.429	0.296	47.849
240	58.181	0.572	0.355	58.185
265	75.835	0.809	0.458	75.841
290	111.989	1.282	0.672	111.999
325	383.172	4.679	2.293	383.207

Величины полуосей эллипсоидов импульса скорости коррекции

Видим, что для второй, более продолжительной траектории полета к Апофису величина корректирующего импульса скорости заметно больше, чем для первой траектории с более коротким временем полета до астероида.

5.Заключение

1. Для двух номинальных траекторий полета КА к астероиду Апофис (с временем полета от Земли до Апофиса 122 сут. и 335 сут.) рассчитано семейство отклоненных траекторий КА с некоторыми начальными отклонениями, вызванными ошибками выведения КА на траекторию полета к астероиду. Определено соответствующее множество конечных отклонений КА у Апофиса.

2. Разработана методика и сделан численный анализ определения ковариационной матрицы и эллипсоида рассеивания конечных координат КА у астероида Апофис.

3. Выбраны точки коррекции на обеих орбитах. Разработаны методики и сделан численный анализ определения величины и направления импульсов скорости коррекции.

4. Получены статистические характеристики коррекции: ковариационная матрица и эллипсоид рассеивания компонент импульса скорости коррекции. Получены оценки корректирующего импульса скорости для обеих траекторий полета КА к астероиду Апофис.

5. Для более продолжительной траектории полета к Апофису величина корректирующего импульса скорости заметно больше, чем для траектории с более коротким временем полета до астероида.

Список литературы

- Viacheslav V. Ivashkin, Cyril A. Stikhno. An Analysis of the Correction Problem for Near-Earth Asteroid (99942) Apophis=2004 MN4 // Proceedings. Planetary Defense Conference. G. Washington University March 5-8 2007. P. 1-7.
- 2. Платонов А.К. Исследование свойств корректирующих маневров в межпланетных полетах // Космические Исследования. 1966. Вып.5. С. 671-673
- Нариманов Г.С., Тихонравова М.К. Основы теории полета космических аппаратов.
 М.: Машиностроение, 1972. 608с.
- 4. Охоцимский Д.Е., Сихарулидзе Ю.Г. Основы механики космического полета. М.: Наука, 1990. 448с.
- 5. Зеленцов В.В., Казаковцев В.П. Основы баллистического проектирования искусственных спутников Земли. М.: МГТУ им. Н. Э. Баумана, 2012. 178с.
- Ивашкин В. В., Крылов И. В., Лан А. Оптимальные траектории для экспедиции КА к астероиду Апофис с возвращением к Земле // Астрон. вестн. 2013. Т. 47. Вып. 4. С. 361-372.
- Стражева И.В., Мелкумов В.С. Векторно-матричные методы в механике полета. М.: Машиностроение, 1973. 260 с.
- Лысенко Л.Н., Бетанов В.В., Звягин Ф.В. Теоретические основы баллистико-навигационного обеспечения космических полетов. М.: МГТУ им. Н. Э. Баумана, 2014. 518 с.

http://sntbul.bmstu.ru/doc/779041.html

- 9. Ивашкин В.В. Совместный анализ задач коррекции и торможения для одного класса траекторий посадки на планету // Космические Исследования, 1968. Вып. 5. С. 649-660.
- 10. Кубасов В.Н., Дашков А.А. Межпланетные полеты. М.: Машиностроение, 1979. 272 с.