электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 62-522.7

К вопросу о тактовых цепях

Бойко В.Д., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Гидромашины, гидромеханика и гидропневмоавтоматика»

Научный руководитель: Ефремова К.Д., к.т.н., доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Гидромашины, гидромеханика и гидропневмоавтоматика» efremova.k.d@gmail.com

Введение

Одним из важнейших направлений развития приводной техники в условиях современного машиностроения является ее автоматизация и оптимизация по ряду критериев, включая число функциональных элементов, простоту исполнения и затраты на производство и установку. Возможным решением задач автоматизации, стоящих перед пневматическим приводом, является т.н. модульный принцип построения пневмосистем, в частности, использование тактовых цепей.

В работе [1] Ефремовой К.Д., Гаврюшиной О.С. и Наземцева А.С. рассмотрено применение тактовых цепей в управляющих пневматических системах и выделены основные принципы их построения и использования. Немецкий ученый Рудольф Хауг в своей книге [2] отмечает преимущества автоматизации работы пневматического привода посредством тактовых цепей по сравнению с традиционными пневматическими элементами.

Широкое применение пневматического привода обусловлено следующими его достоинствами по сравнению с гидравлическими и электрическими системами: доступность рабочей среды, экологичность, простота конструкции за счет отсутствия сливных линий, защищенность от перегрузок, радиационных воздействий и др. За счет использования тактовых цепей область применения пневмопривода может быть существенно расширена.

Тактовая цепь представляет собой пневматическое устройство управления, в которой осуществлена интеграция распределительных и логических элементов в один функциональный блок. Подобное технологическое решение имеет ряд преимуществ:

- значительное сокращение элементов привода, следствием чего является простота конструкции, уменьшенная масса и стоимость привода;
- отсутствие необходимости использования электричества в элементах привода (за исключением работы компрессора);
 - простота перенастройки системы.

1. Постановка и формализация задачи

В данной статье рассматривается выполнение при помощи пневматической системы управления (ПСУ) заданного технологического процесса, циклограмма которого представлена на рис. 1. На циклограмме показано функционирование двух пневмоцилиндров, А и В. Циклограмма построена в координатах «перемещение-шаг». В рассматриваемой циклограмме 7 рабочих шагов, 8 — возврат к началу последующего цикла. Знаки «+» и «-» означают соответственно выдвижение и втягивание штоков пневмоцилиндров А и В.

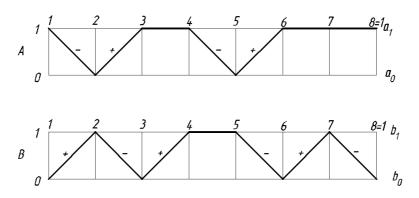


Рис. 1. Циклограмма технологического процесса

Контроль положения штоков пневмоцилиндров осуществляется путевыми выключателями a_1 и a_0 для пневмоцилиндра A, b_1 и b_0 для пневмоцилиндра B соответственно. Индекс «0» означает неактивность путевого выключателя, индекс «1» - активность. Исходному положению пневмоцилиндра A (шток выдвинут) соответствует позиция «1», шток пневмоцилиндра B втянут, что соответствует позиции «0».

Задачей исследования является сравнение двух различных методов пневматического управления, а именно:

1) Схема пневматического управления, построенная из отдельных пневматических устройств и элементов, т.е. применяется классическое схемное решение задачи управления [3], [4].

2) Задача управления остается прежней, но в управляющей части системы используется программируемое пневматическое управляющее устройство – тактовая цепь (использование модульного принципа построения схемы пневматического управления).

2. Логический метод

По циклограмме технологического процесса необходимо разработать алгоритм управления, используя законы алгебры Буля. Запишем условия выполнения каждого шага:

$$\begin{cases}
1. \begin{cases}
A_{-} = St \cdot a_{1} \cdot b_{0} \\
B_{+} = St \cdot a_{1} \cdot b_{0}
\end{cases} \\
2. \begin{cases}
A_{+} = a_{0} \cdot b_{1} \\
B_{-} = a_{0} \cdot b_{1}
\end{cases} \\
3. B_{+} = a_{1} \cdot b_{0}
\end{cases} \\
4. A_{-} = a_{1} \cdot b_{1}
\end{cases} \\
5. \begin{cases}
A_{+} = a_{0} \cdot b_{1} \\
B_{-} = a_{0} \cdot b_{1}
\end{cases} \\
6. B_{+} = a_{1} \cdot b_{0}
\end{cases} \\
7. B_{-} = a_{1} \cdot b_{1}
\end{cases}$$

Из представленного алгоритма (1) видно, что шаги 1 и 3, 4 и 7 являются совпадающими, следовательно, необходим ввод дополнительных сигналов, позволяющих различать условия их выполнения. Для этого в пневматическую систему были введены два триггера, создающие управляющие сигналы T_1 , T_2 и T_3 , T_4 соответственно, а также счетчик импульсов с пневмоцилиндром одностороннего действия с пружинным возвратом, создающим различающий сигнал C_1 Алгоритм примет следующий вид:

$$\begin{cases}
1. \begin{cases}
A_{-} = St \cdot a_{1} \cdot b_{0} \cdot T_{1} \\
B_{+} = St \cdot a_{1} \cdot b_{0}
\end{cases} \\
2. \begin{cases}
A_{+} = a_{0} \cdot b_{1} \\
B_{-} = a_{0} \cdot b_{1}
\end{cases} \\
3. \begin{cases}
B_{+} = a_{1} \cdot b_{0} \cdot T_{2} \\
xT_{3} = a_{1} \cdot b_{0} \cdot T_{2}
\end{cases} \\
4. \quad A_{-} = a_{1} \cdot b_{1} \cdot T_{3}
\end{cases} \\
5. \begin{cases}
A_{+} = a_{0} \cdot b_{1} \\
B_{-} = a_{0} \cdot b_{1}
\end{cases} \\
6. \begin{cases}
B_{+} = a_{1} \cdot b_{0} \\
xT_{4} = C_{1}
\end{cases} \\
7. \begin{cases}
B_{-} = a_{1} \cdot b_{1} \cdot T_{4} \\
xT_{1} = a_{1} \cdot b_{1} \cdot T_{4}
\end{cases}$$

Из анализа алгоритма (2) видно, что он содержит повторяющиеся шаги, а именно: выдвижение штока ПЦ А (A_+) – 2 раза, втягивание штока ПЦ А (A_-) – 2 раза, выдвижение штока ПЦ В (B_+) – 3 раза, втягивание штока ПЦ В (B_-) – 3 раза. Для их реализации необходимо использовать логический клапан, выполняющий функцию дизьюнкции (операция «ИЛИ»). С этой целью в алгоритме следует указать необходимость применения данного клапана, записав алгоритм управления по действиям:

$$\begin{cases}
A_{+} = a_{0} \cdot b_{1} \\
A_{-} = (St \cdot a_{1} \cdot b_{0} \cdot T_{1})V(a_{1} \cdot b_{1} \cdot T_{3}) \\
B_{+} = (St \cdot a_{1} \cdot b_{0})V(a_{1} \cdot b_{0} \cdot T_{2}) \\
B_{-} = (a_{0} \cdot b_{1})V(a_{1} \cdot b_{1} \cdot T_{4})
\end{cases} (3)$$

На основе алгоритмов управления (2) и (3) в пакете FluidSIM-Р была разработана ПСУ заданного технологического процесса, представленная на рис. 2.

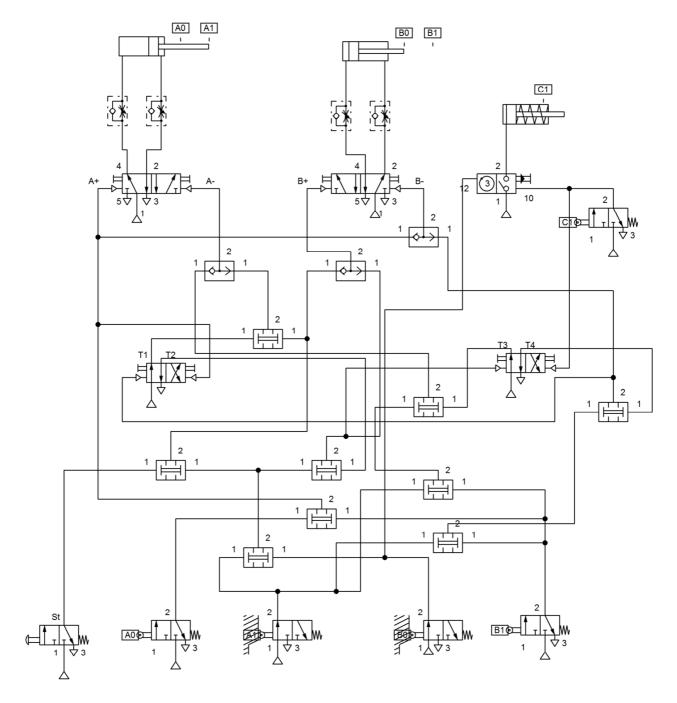


Рис. 2. Принципиальная схема ПСУ, выполненная на основе логического метода

В состав исполнительной части ПСУ входят два пневматических цилиндра A и B, являющихся выходными звеньями пневмопривода, и два дросселя с обратными клапанами, позволяющие регулировать скорости движения выходных звеньев. Распределительно-направляющая подсистема представлена двумя пневматическими распределителями 5/2 с пневматическим управлением и ручным дублированием, основное назначение которых — распределение потока воздуха в соответствующие полости пневмоцилиндров.

Управляющая подсистема состоит из 2 триггеров, создающих управляющие сигналы T_1 , T_2 и T_3 , T_4 , счетчика импульсов с пневмоцилиндром одностороннего действия с пружинным возвратом, создающим различающий сигнал C_1 , 9 клапанов двух давлений, выполняющих функцию конъюнкции и 3 перекидных клапанов, выполняющих функцию дизьюнкции. Кроме того, в ее состав входят 5 путевых выключателей, необходимых для создания сигналов a_0 и a_1 , b_0 и b_1 , а также c_1 , и стартовая кнопка S_1 , служащая для запуска выполнения технологического процесса.

Для наглядного представления на рисунках 3 и 4 приводятся снимки проведенного на экспериментальной установке в лаборатории пневмоавтоматики кафедры «Гидромеханика, гидромашины и гидропневмоавтоматика» физического моделирования разработанной ПСУ.

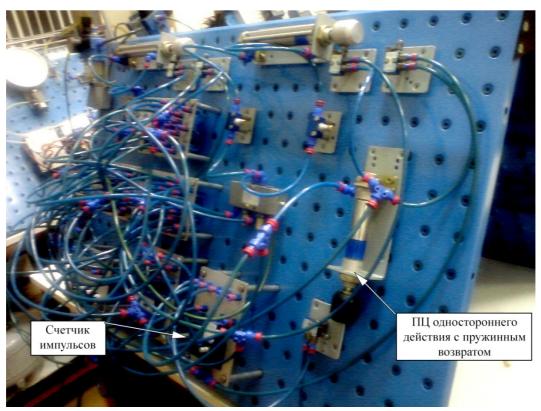


Рис. 3. Физическое моделирование ПСУ, выполненное на стенде

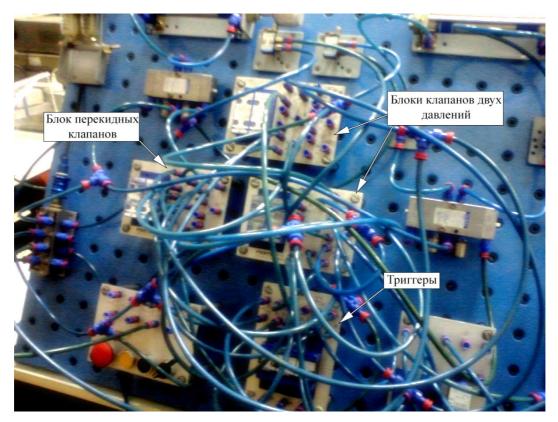


Рис. 4. Устройства логико-вычислительной подсистемы ПСУ

3. Модульный принцип

Для разработки пневматической системы при помощи модульного принципа последовательность действий (циклограмма ТП на рис. 1.) разбивается на группы действий:

Верхняя строка соответствует условиям выполнения каждого из шагов согласно алгебре Буля (входным сигналам тактовой цепи). Нижняя строка показывает группы действий $I\dots VI$. $A_1\dots A_6$ — выходные сигналы тактовой цепи.

Основное правило разбиения последовательности шагов на группы: в одной группе не должно быть противоположных действий одного пневмоцилиндра (например, A_{-} и A_{+}).

На основе алгоритма управления (4) в пакете FluidSIM-Р была разработана ПСУ заданного технологического процесса, представленная на рис. 5.

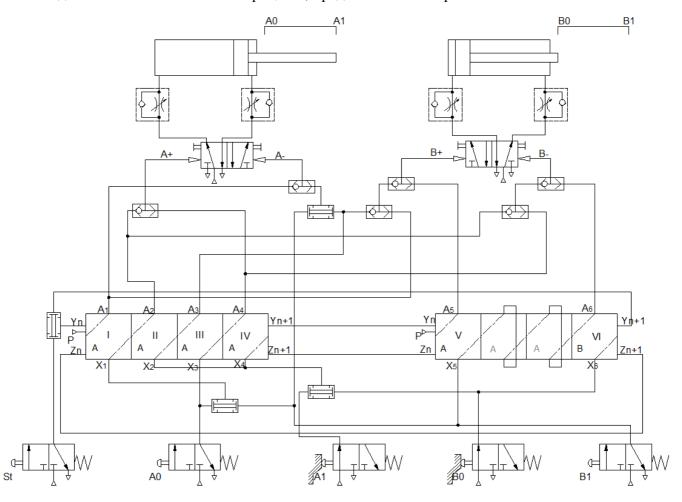


Рис. 5. Принципиальная схема пневмопривода, выполненная на основе модульного принципа

Для упрощения восприятия схемы структура тактовых цепей показана условно: указан тип каждого модуля (А или В), номер группы и способ его подключения. Из рисунка видно, что для соединения двух и более тактовых цепей необходимо последовательно подключить выходы Y_{n+1} и Z_{n+1} одной цепи к входам Y_n и Z_n последующей цепи, при этом необходима коммутация между Z_n первого модуля и Z_{n+1} последнего модуля. При наличии незадействованного модуля его необходимо закольцевать, соединив между собой вход и выход данного модуля.

Структура тактовых модулей представлена на рисунках 6 и 7.

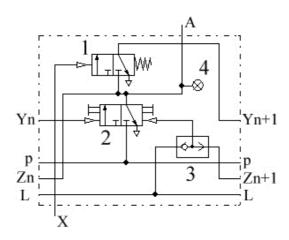


Рис. 6. Тактовый модуль типа А

Тактовый модуль типа А состоит из моностабильного распределителя 1, выполняющего функцию конъюнкции, элемента памяти 2, представляющего собой бистабильный распределитель, выполняющий функцию запоминающего устройства – триггера, логического перекидного клапана 3 и индикатора давления 4. Коммутация осуществляется при помощи следующих каналов:

р – питание тактового модуля;

 Y_n, Y_{n+1} — сигнал включения следующего тактового модуля;

 Z_{n} , Z_{n+1} — сигнал отключения предыдущего тактового модуля;

L – сигнал вывода модуля в исходное положение (в данной работе не используется);

Х – входной сигнал;

А – выходной сигнал.

Тактовый модуль типа B, устройство которого показано на рисунке 7, отличается от типа A расположением логического перекидного клапана 3. Модуль типа B используется последним в цепочке модулей тактовой цепи.

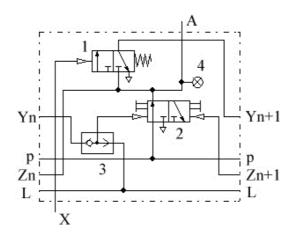


Рис. 7. Тактовый модуль типа В

Физическое моделирование разработанной ПСУ выполнено на экспериментальной установке в лаборатории пневмоавтоматики кафедры «Гидромеханика, гидромашины и гидропневмоавтоматика» (см. рис. 8).

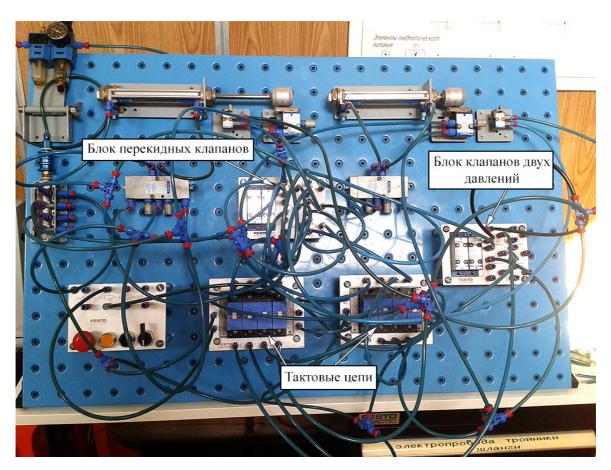


Рис. 8. Разработанная на основе модульного принципа ПСУ

Сравнивая и анализируя представленные варианты исполнения управляющей части ПСУ, можно отметить упрощение структуры пневмопривода и сокращение количества используемых элементов. Таким образом, использование тактовой цепи предоставляет

возможность создания функциональной, надежной и достаточно простой системы программного управления по сравнению с традиционными методами построения пневмоприводов.

Выводы

Использование тактовых цепей упрощает автоматизацию пневматических систем, понижает стоимость их обслуживания (поскольку нет необходимости демонтировать пневматические устройства исполнительной части ПСУ при изменении ее управляющей части), что ведет к повышению надежности. В силу сокращения числа элементов в управляющей части ПСУ уменьшается масса системы.

Список литературы

- 1. Гаврюшина О.С., Ефремова К.Д., Наземцев А.С. Применение тактовых цепей в циклических пневмосистемах управления. Методические указания. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 28 с.
- 2. Haug R. Pneumatische Steuerungstechnik. 2., neubearb. und erw. Aufl. Stuttgart: Vieweg+Teubner Verlag, 1991. 324 s.
- 3. Ebel F., Idler S., Prede G., Scholz D. Pneumatik und Elektropneumatik. Grundlagen. Lehrbuch. Esslingen: Bildungsverlag Eins, 2010. 212 s.
- 4. Hasebrink J.P., Kobler R., Idler S. Grundlagen der pneumatischen Steuerungstechnik. Lehrbuch. Esslingen: Festo Didaktik, 1985. 201 s.