МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

10, октябрь 2010

УДК 372.862

Макет и 3D-модель к стереометрической задаче

Тюрин И.Ю., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Проектирование и технология производства электронной аппаратуры»

> Научный руководитель: Юренкова Л.Р., к.т.н., доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, Кафедра «Инженерная графика» julia-nebova@mail.ru

В учебнике по стереометрии для 11 класса привлекла внимание задача следующего содержания [1]:

«Даны две скрещивающиеся прямые, угол между которыми равен 90^{0} . Найти множество середин всех отрезков данной длины d, концы которых лежат на этих прямых»

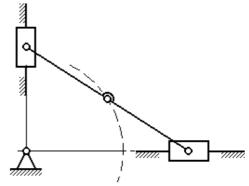


Рис. 1. Синусный шарнирный механизм

Анализ условия показал, что речь идет о синусном шарнирном механизме (рис.1). На рис. 2 приведено исследование механизма в ортогональных проекциях.

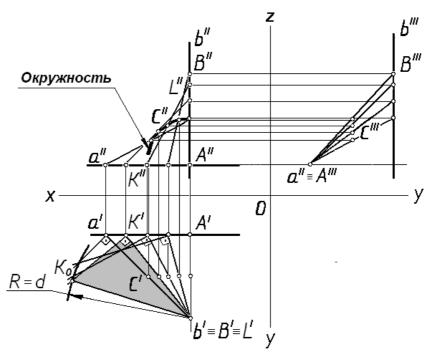


Рис. 2. Исследование механизма в ортогональных проекциях

Перенесем начало координат в точку B', тогда середина отрезка d - точка C будет иметь координаты (x, y, z), причем y = A'B'/2 = h/2, где h – расстояние между данными скрещивающимися прямыми.

Это следует из теоремы: «расстояние между скрещивающимися прямыми равняется расстоянию между ИХ ортогональными проекциями плоскости, перпендикулярной к одной из них». Рассмотрим одно из положений движущегося отрезка - К. Для определения длины этого отрезка по его ортогональным проекциям построен прямоугольный треугольник $K'L'K_0$ по следующему правилу: «для определения длины отрезка прямой по его проекциям следует построить прямоугольный треугольник, одним катетом которого является, например, горизонтальная проекция отрезка, а другим абсолютная величина алгебраической разности аппликат концов отрезка. Тогда гипотенуза равна длине отрезка». По теореме Пифагора $KL^2 = K'L'^2 + K'K_0^2$. Квадрат длины катета K'L' равен $(4x^2+h^2)$, $K'K_0{}^2=4z^2$, а $KL^2=d^2$. Получим: $d^2=4x^2+h^2+4z^2$, а после преобразования: $x^2 + z^2 = (\frac{1}{2}\sqrt{d^2 - h^2})^2$. Последнее выражение соответствует уравнению окружности радиуса $\frac{1}{2}\sqrt{d^2-h^2}$, множество точек которой соответствует серединам всех отрезков данной длины d, концы которых лежат на данных скрещивающихся прямых. Что требовалось доказать.

Аналитическое исследование синусного рычажного механизма (рис. 3)

1. Пусть начало координат находится в точке O – середине отрезка AB (длина отрезка AB – это расстояния между скрещивающимися прямыми a и b).

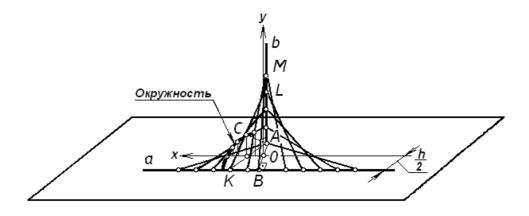


Рис. 3. Исследование механизма

- 2. В каждом положении отрезка, имеющего длину d и перемещающегося по прямым a и b, его середина точка C имеет координаты x и y. Рассмотрим одно из положений точки C, тогда из прямоугольного треугольника AKL: $x^2 + y^2 = CO^2$ (рис. 4).
- 3. Далее из прямоугольного треугольника ACO: $AC^2 = CC_1$. $^2 + AO_1^2 = y^2 + x^2 + (h/2)^2$.

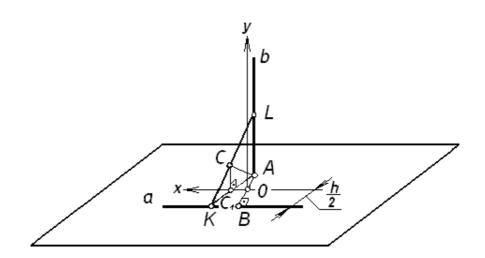


Рис. 4. Одно из положений точки С

Так как середина гипотенузы прямоугольного треугольника есть центр описанной в него окружности, то ее радиус равен половине гипотенузы, то есть $R^2 = AC^2 = (d/2)^2$ или. $(d/2)^2 = x^2 + y^2 + (h/2)^2$. После преобразования окончательно, получим:

$$x^2 + y^2 = (\frac{1}{2}\sqrt{d^2 - h^2})^2$$
.

Это выражение представляет собой уравнение окружности, и, значит, точка C – середина отрезка, перемещающегося по двум скрещивающимся прямым, описывает в пространстве дугу окружности. Что и требовалось доказать.

Для лучшего понимания этой задачи выполнены макет (рис.5) и 3D-модель в программе Autodesk Inventor (рис. 6) .

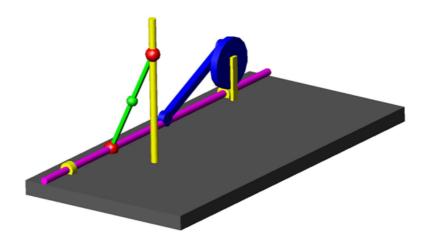


Рис. 5. Макет

Рис. 6. 3D модель

Список литературы

- 1. Александров А.Д., Вернер А.Л, Рыжик В.И. Геометрия: учебник для 10-11 классов с углубленным изучением математики. М.: Просвещение, 2000. 238 с.
- 2. Федоренков А. П., Полубинская Л. Г. Autodesk Inventor. Шаг за Шагом. М.: изд-во: ЭКСМО, 2008.
- 3. Фролов С.А. Начертательная геометрия: учебник. М: ИНФРА-М, 2007. 285 с.
- 4. Трембли Том Autodesk Inventor 2013 и Inventor LT 2013: Autodesk Official Training Guide. M.: ДМК Пресс 2013. 344 с.