МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 621.382

Оценка деструктивного влияния метеороидов и частиц космического мусора на оптическую систему космического аппарата

Барсуков К.Б., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Радиоэлектронные системы и устройства»

Научный руководитель: Славинский М.К., старший преподаватель Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Радиоэлектронные системы и устройства» <u>RL1@bmstu.ru</u>

В данной статье рассматривается деструктивное влияние метеороидов и частиц космического мусора на элементы оптических систем (ОС) космического аппарата (КА), и предлагается методика оценки данного влияния с использованием существующих математических моделей оценки кратеров от столкновения с различными частицами, моделей распределения метеороидов и частиц космического мусора.

В оптических системах КА используется зеркальные схемы, поэтому основным элементом, подверженным влиянию деструктивных факторов, будем считать зеркало. В качестве типового зеркала будет рассматриваться следующая конструкция: слой алюминия с защитным слоем из кристаллического кварца (SiO₂) на подложке из ситалла. В данной модели типового зеркала непосредственно отражающее покрытие представляет собой тонкий слой алюминия. Следовательно, можно предположить два исхода от столкновения единичной частицы с зеркальной поверхностью – частица пробивает слой или не пробивает слой, не изменяя формы его поверхности. При этом в месте пробоя зеркало полностью теряет отражательные свойства. В таком случае можно считать, что деградация оптических свойств определяется отношением суммарной площади разрушений к площади зеркала.

Результат столкновения оценивают в предельной толщине материала, глубине кратера *P*_C, диаметре кратера *D*_C или дыры (если пластина пробивается полностью).

В [1] на основе анализа экспериментальных результатов приводится формула для оценки диаметра кратера *D_C*:

$$D_{C} = 0.54 \cdot d_{p} \cdot \left(\frac{\rho_{p}}{\rho_{t}}\right)^{2/3} \cdot \left(\sqrt{\frac{6.895 \cdot \rho_{t}}{Y_{t}}} \cdot v \cdot cos(\theta)\right)^{2/3},$$
(1)

где

 d_p — диаметр частицы, см;

 ρ_p – плотность частицы, гр/см³;

 ρ_t – плотность материала пластины, гр/см³;

 Y_t — предел текучести материала пластины, в [1] измеряется в lb·10³/inch, для перевода в МПа делится на 6,895;

v – скорость столкновения, км/с;

θ – угол столкновения, отмеряемый от нормали.

Для оценки диаметра кратера *D_C*, см, часто используют [2] следующую формулу:

$$D_{C} = 10.5 \cdot d_{p}^{19/18} \cdot BH^{-0.25} \cdot \left(\frac{\rho_{p}}{\rho_{t}}\right)^{0.5} \cdot \left(\frac{v \cdot \cos(\theta)}{v_{ct}}\right)^{2/3}, \qquad (2)$$

где

*BH*_t – твердость по Бринеллю материала пластины;

 v_{ct} – скорость звука в материале пластины, км/с.

В [3] предложена более сложная модель разрушения стеклянной поверхности, показанная на рисунке 1. Согласно этой модели результат разрушения состоит из двух зон: собственно кратер, характеризующийся глубиной P_C и диаметром D_C , и зона скола, описываемая собственной глубиной P_S и собственным диаметром D_S .

Рис. 1. Модель геометрии разрушения поверхности из кварцевого стекла

В [3] приводятся формулы для расчета параметров разрушения различного типа стеклянных пластинок, которые достаточно точно описывают экспериментальные результаты. Так для оценки диаметра кратера на поверхности fused silica предлагается использовать следующую формулу:

$$D_{C} = 1,99 \cdot \rho_{p}^{-0.18} \cdot E_{p}^{0.356} = 1,99 \cdot \rho_{p}^{-0.18} \cdot \left(\frac{\pi \cdot d_{p}^{3} \cdot \rho_{p} \cdot v^{2}}{12} \cdot 10^{10}\right)^{0,356},$$
(3)

где *E*_{*p*} – кинетическая энергия частицы.

Для оценки диаметра зоны скола предлагается использовать следующую формулу:

$$D_{s} = 4,55 \cdot d_{p} \cdot \rho_{p}^{-0.5} \cdot E_{p}^{0.1} = 4,55 \cdot d_{p} \cdot \rho_{p}^{-0.5} \cdot \left(\frac{\pi \cdot d_{p}^{3} \cdot \rho_{p} \cdot v^{2}}{12} \cdot 10^{10}\right)^{0.1}.$$
(4)

Для оценки глубины кратера предлагается использовать следующую формулу:

$$P_{C} = K \cdot d_{p}^{1,2} \cdot \rho_{p}^{0,5} \cdot \left(v \cdot \cos(\theta)\right)^{0,67}, \qquad (5)$$

где *К* – коэффициент, принимающий для различного вида стекла следующие значения: 0,66 для fused silica; 0,86 для Vicor; 0,523 для Pyrex.

Сравнительный анализ результатов расчета показывает, что:диаметр кратера D_C , рассчитанный по формуле (3) принимает среднее значение между аналогами, рассчитанными по формулам (1) и (2).

Исходя из вышесказанного, можно предложить использовать для оценки параметров разрушения типового зеркала формулы (3)–(5). При этом считая, что глубина области скола:

$$P_S = P_C \cdot 0,55. \tag{6}$$

Площадь разрушения зеркального слоя от единичного столкновения S_p будем оценивать по следующей формуле:

$$S_{p} = \frac{\pi \cdot D_{p}^{2}}{4}, \quad D_{p} = \begin{cases} 0 & \text{, если } P_{c} < t_{\kappa_{\theta}} \\ D_{S} & \text{, если } P_{c} \cdot 0,55 \ge \left(t_{\kappa_{\theta}} + t_{sep}\right) \\ D_{C} & \text{, в остальных случаях} \end{cases}$$
(7)

где

 D_p – диаметр разрушения;

*t*_{кв} – толщина защитного слоя;

t_{зер} – толщина зеркального слоя.

В работе [5] сравниваются различные модели распределения метеороидов. Показано, что разные модели дают близкие распределения. Поэтому для дальнейших исследований выберем наиболее простой способ – модель Грюна [4]. Согласно этой модели функция распределения, определяющая число столкновений с площадкой площадью 1 м² частиц массой *m* и менее за год, задается следующей формулой:

$$F_m(m) = c_0 \cdot \left(\left(c_1 \cdot m^{0.306} + c_2 \right)^{-4.38} + c_3 \cdot \left(m + c_4 \cdot m^2 + c_5 \cdot m^4 \right)^{-0.36} + c_6 \cdot \left(m + c_7 \cdot m^2 \right)^{-0.8} \right)$$
(8)

где константы $c_0 - c_7$ принимают значения $c_0 = 3,156 \cdot 10^7$; $c_1 = 2,2 \cdot 10^3$; $c_2 = 15$; $c_3 = 1,3 \cdot 10^{-9}$; $c_4 = 1,0 \cdot 10^{11}$; $c_5 = 1,0 \cdot 10^{27}$; $c_6 = 1,3 \cdot 10^{-16}$; $c_7 = 1,0 \cdot 10^6$.

Модель Грюна применима для частиц массой от 10^{-18} до 10^2 грамм и не учитывает гравитационных эффектов Земли и Луны. В этой модели предполагаются усредненные для всех частиц плотности ($\rho_m = 0.5$ г/см³) и скорости ($v_m = 20.0$ км/с). Поскольку плотность частиц принимается постоянной вне зависимости от размера, диаметр частицы также определяется простым соотношением в зависимости от массы, предполагая, что частицы имеют форму шара:

$$d = 2 \cdot \left(\frac{3}{4\pi} \cdot \frac{m}{\rho}\right)^{\frac{1}{3}}.$$
(9)

Соответственно соотношение, связывающее массу частицы с ее диаметром, будет выглядеть следующим образом:

$$m = \frac{\pi \cdot \rho \cdot d^3}{6} \,. \tag{10}$$

Наиболее простой моделью распреления частиц ксомического мусора является модель NASA 90, представляющая собой набор несложных формул. Исходя из данных сравнительного анализа моделей потоков частиц космического мусора [6], расхождение моделей от реальных данных в разы превышает расхождение моделей между собой. Поэтому использование простой модели NASA 90 не сильно портит и без того не очень точные модельные представления о потоке космического мусора.

В соответствии с моделью NASA 90 число частиц диаметра d и меньше, которое попадает на площадку 1 м² космического аппарата, находящегося на орбите с высотой h км ($h \le 1000$ км) и наклоном i град можно оценить по следующей формуле:

$$F_{d}(d,h,i,t,S) = \sqrt{10^{H(d)}} \cdot \Phi(h,S) \cdot \Psi(i) \cdot (F_{1}(d) \cdot g_{1}(t) + F_{2}(d) \cdot g_{2}(t)),$$
(11)

$$H(d) = exp\left(-\frac{(\log_{10}d - 0.78)^2}{0.406}\right),$$

$$\Phi(h, S) = \Phi_1(h, S) \cdot (1 + \Phi_1(h, S))^{-1}, \ \Phi_1(h, S) = 10^{\frac{h}{200} - \frac{S}{140} - 1.5},$$

$$F_1(d) = 1.22 \cdot 10^{-5} \cdot d^{-2.5}, \ g_1(t, q) = (1 + q)^{t-1988},$$

$$F_2(d) = 8.1 \cdot 10^{10} \cdot (d + 700)^{-6}, \ g_2(t, q) = 1 + p \cdot (t - 1988),$$

где

i – наклонение орбиты;

t – год, для которого производится подсчет потока частиц;

S – среднегодовой поток излучения солнца на длине волны 10,7 см. за год, предыдущий от *t* (в последние годы значение *S* лежит в диапазоне от 70 до 150);

ψ – параметр, зависящий от наклона орбиты (таблица 1).

Таблица 1

Значения параметра ψ

і, град	28,5	30	40	50	60	70	80	90	100	120
ψ(<i>i</i>)	0,91	0,92	0,96	1,02	1,09	1,26	1,71	1,37	1,78	1,18

В количественном выражении предлагаем для учета влияния метеороидов и частиц орбитального мусора ввести коэффициент деградации зеркальной поверхности и рассчитывать его по следующей формуле:

$$k_{m\&d} = \frac{S_m + S_d}{S_m},\tag{12}$$

где

 S_m – площади разрушений одного квадратного метра поверхности зеркала от метеороидов, м²;

S_d – площади разрушений одного квадратного метра поверхности зеркала от частиц орбитального мусора, м²;

 S_m – площадь первого зеркала ОС, м².

Площадь разрушений одного квадратного метра поверхности зеркала от метеороидов можно оценить по следующей формуле:

$$S_{m} = \sum_{d_{i}=d_{mn},\dots,d_{mx}} S_{p}(d_{i}) \cdot (F_{m}(d_{i}) - F_{m}(d_{i+1})),$$
(13)

где

 $S_p(d_i)$ — оцениваемая по соотношению (7) площадь разрушения зеркального слоя от единичного столкновения метеороидом диаметра d_i , с учетом принятой в модели Грюна плотности и скорости метеороидов, м²;

F_m – задаваемая соотношением (8) функция распределения метеороидов, с учетом правила пересчета массы частички в ее диаметр (9).

Площадь разрушений одного квадратного метра поверхности зеркала от частиц орбитального мусора можно оценить по следующему соотношению:

$$S_{d} = \sum_{d_{i}=d_{mn},\dots,d_{mx}} S_{p}(d_{i}) \cdot (F_{d}(d_{i}) - F_{d}(d_{i+1})),$$
(14)

где

 $S_p(d_i)$ – оцениваемая по соотношению (7) площадь разрушения зеркального слоя от единичного столкновения с частицей мусора диаметром d_i , с учетом принятой в модели NASA-90 плотности и средней скорости частиц мусора, м²;

F_d – задаваемая соотношением (11) функция распределения частиц орбитального мусора.

На рисунке 2 представлена функция величины площадей разрушений S_m и S_d одного квадратного метра зеркальной поверхности в год от метеороидов и частиц орбитального мусора соответственно в зависимости от значения d_{mn} . При этом значение d_{mx} было фиксированным и равнялось 10^{-2} м. Левая часть графиков стабилизирована и определяет итоговые оценки S_m и S_d .

Рис. 2. Кумулятивная функция площади разрушения от потока метеороидов (модель Грюна) и частиц орбитального мусора (модель NASA-90) диаметром менее заданного, приходящихся на площадку площадью 1 м² за год для круговой орбиты высотой 1600 км с наклонением 60 градусов

В таблице 2 представлены оценки деструктивного влияния метеороидов и частиц космического орбитального мусора на входную оптику космического аппарата с диаметром входной апертуры 0.5 м, находящегося в течении одного года на круговой орбите высотой 1600 км с наклонением от 0 до 120 градусов.

Данные таблицы 2 позволяют сделать следующий вывод: деструктивное влияние метеороидов и частиц космического орбитального мусора на входную оптику минимально и составляет величину порядка половины процента.

Таблица 2

	Наклонение орбиты, градусы							
	0	30	60	90	120			
Площадь разрушения 1 м^2 поверхности зеркала от метеороидов S_m , м^2	4,121.10-5	4,121.10-5	4,121.10-5	4,121.10-5	4,121.10-5			
Площадь разрушения 1м ²	7,738·10 ⁻⁴	7,799·10 ⁻⁴	9,566·10 ⁻⁴	$1,292 \cdot 10^{-3}$	1,079·10 ⁻³			

Площадь разрушения и коэффициент деградации поверхности зеркала КА на круговой орбите высотой 1600 км за год

поверхности зеркала от частиц орбитального мусора <i>S_d</i> , м ²					
Общая площадь разрушения 1м ² поверхности зеркала, м ²	8,151.10-4	8,211.10-4	9,978·10 ⁻⁴	1,334·10 ⁻³	1,120.10-3
Коэффициент деградации поверхности зеркала <i>k_{m&d}</i>	0,0039	0,0040	0,0051	0,0068	0,0057

Список литературы

- 1. Love S.G. Morphology of meteoroid and debris impact craters formed in soft metal targets on the LDEF satellite // Int. J. of Impact Engineering. 1995. № 16. № 3. P.405–418.
- Gäde A., Miller A. ESABASE2/Debris Release 6.0. Technical Description. Режим доступа: <u>http://esabase2.net/wp-content/uploads/2013/07/ESABASE2-Debris-Technical-</u> <u>Description.pdf</u> (дата обращения 20.02.2015).
- 3. Shanbing Y. Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target // Int. J. of Impact Engineering. 1994. № 1. P. 67–77.
- 4. Grun E., Zook H.A., Fechtig H., Giese R.H. Collisional balance of the meteoritic complex // ICARUS 1985. № 2. P. 244-272.
- 5. Drolshagen G. Comparison of meteoroid models. IADC Action Item 24.1. Режим доступа: <u>http://www.iadc-online.org/Documents/IADC-09-03_AI_n24_1_final1.pdf</u> (дата обращения 13.02.2015).
- 6. Fucushige S. Comparison of Debris Environment Models: ORDEM2000, MASTER2001 and MASTER2005 // IHI Eng. Review. 2007. № 1. P. 31–41.
- 7. Поздняков А. Ю. Предварительное обоснование технического облика оптической системы целевой аппаратуры для КА в составе космического сегмента СККП // Молодежный научно-технический вестник. Электрон. журн. 2013. № 11. Режим доступа: <u>http://sntbul.bmstu.ru/doc/636104.html</u> (дата обращения 25.03.2015).