МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

10, октябрь 2015

УДК 616-072.7: 681.784

Этапы проектирования многоканального датчика для картирования в спектрофотометрии биологических тканей

Селиверстов А.Б., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра БМТ-2 «Медико-технические информационные технологии»

Научный руководитель: Сафонова Л.П., к.т.н., доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра БМТ-2 «Медико-технические информационные технологии» <u>pvi@bmstu.ru</u>

Введение

В последнее время наблюдается значительный рост числа публикаций в области инфракрасной спектроскопии (спектрофотометрии) функциональной ближней И визуализации. Прогресс и основные научные и практические результаты в этой области представлены в работе M. Wolf и соавторов [1]. Интерес к средствам неинвазивного мониторинга тканевой гемодинамики, к средствам визуализации функциональной активности и уровня метаболизма биологических тканей и в последующие годы останется устойчивым и высоким, так как потенциал данного метода исследования достаточно велик и далеко не все его возможности полностью освоены. Спектрофотометрические методы исследования являются мониторными, относительно простыми в технической реализации и малозатратными, позволяют получать количественную информацию об уровнях поставки и потребления кислорода тканями с высоким временным разрешением. Основными ограничениями являются глубина зондирования биотканей (несколько сантиметров) и пространственное разрешение (порядка 5 мм).

Уникальные возможности спектрофотометрического метода заключаются: в ранней диагностике когнитивных или двигательных дисфункций у недоношенных детей, что потенциально дает возможность провести раннее лечение; в анализе функций головного мозга у пациентов, находящихся в бессознательном состоянии в отделениях интенсивной терапии; в анализе состояния мозга во время проведения операции; в

обнаружении инсульта у пациентов в машине скорой помощи. Данные исследования также актуальны в восстановительной и спортивной медицине, в неврологии на этапе реабилитации пациентов после травм и инсультов, а также для исследований в нейрофизиологии, включая разработку нейрокомпьютерного интерфейса.

Преимущество портативных неинвазивных диагностических систем, основанных на принципах спектрофотометрии с применением непрерывного режима излучения, заключается в возможности использования простых быстродействующих алгоритмов обработки данных и построения изображений при достаточно большом количестве источников и приемников излучения в многодистантном подходе.

Важными задачами при разработке датчика являются оптимизация количества используемых источников и приемников, а также увеличение скорости сбора информации за счет оптимизации схемы переключения источников и приемников. Решению этих задач посвящены работы [2], [3], [4].

Целью данного исследования являлась разработка методики проектирования датчика для многоканального картирования в спектрофотометрии биотканей: определение основных этапов проектирования и медико-технических требований.

Основные этапы разработки спектрофотометрического датчика

В настоящее время в исследовательской и практической медицине востребовано решение задачи визуализации процессов, связанных с функциональной активностью головного мозга. Неинвазивное определение и картирование параметров локального интракраниального кровотока, таких как насыщение «тканевого» гемоглобина кислородом $(StO_2, \%),$ концентраций оксигемоглобина ([O₂Hb], мкМ) И дезоксигемоглобина ([HHb, мкМ]) и их изменений во времени в различных участках коры головного мозга, позволит исследовать механизм нейроваскулярного сопряжения – временную зависимость гемодинамического отклика при нейронной активации.

<u>Этап 1. Определение зоны картирования</u>

Область наложения и размеры оптического датчика имеют анатомическую привязку к исследуемым областям активации коры головного мозга. Локализация изменений кровотока при функциональной активности головного мозга различными методами исследований (реографическим, спектрофотометрическим) соответствует схеме наложения электродов, применяемой в электроэнцефалографии (ЭЭГ). На рисунке 1 схематично показана первичная двигательная (моторная) кора (М1) головного мозга (по

У. Пенфилду, Т. Расмуссену) с указанием проекций двигательной системы в коре предцентральной извилины.

При исследованиях, например, двигательной коры головного мозга спектрофотометричекий датчик располагают таким образом, чтобы регистрирующая секция датчика охватывала точки на линии C3-C4, соответствующие международной системе наложения электродов «10-20» при регистрации сигналов ЭЭГ. Схема наложения электродов ЭЭГ по системе «10-20» показана на рисунке 2. Исследование механизма нейроваскулярного сопряжения в области двигательной коры головного мозга востребовано в неврологии, травматологии, восстановительной и спортивной медицине.

При картировании выявляется соответствие функциональной нагрузки активируемым областям коры головного мозга. Нейронная активация сопряжена с гемодинамическими изменениями в соответствующем участке коры. Косвенными показателями активности являются такие параметры локального кровотока и оксигенации, как концентрации оксигемоглобина, дезоксигемоглобина, общего гемоглобина, тканевая сатурация, а также их изменения.

Рис. 1. Первичная моторная кора М1 (по У. Пенфилду, Т. Расмуссену) с указанием проекций двигательной системы в коре предцентральной извилины

Рис. 2. Международная система наложения электродов «10-20» при регистрации ЭЭГ: точки С3, С4 соответствуют точкам наложения спектрофотометрического датчика

Этап 2. Свето-энергетический расчет

В спектрофотометрии биологических тканей регистрируется обратно рассеянное излучение красного и ближнего инфракрасного (К-БИК) диапазонов длин волн (650-900 нм), слабо поглощаемое тканью и проникающее на глубину нескольких сантиметров.

Глубина проникновения излучения зависит от оптических свойств исследуемых тканей и расстояния между источником и приемником излучения (рис.3).

Рис. 3. Подход к регистрации обратно рассеянного излучения К-БИК диапазона длин волн, обеспечивающий требуемую глубину и область зондирования

При прохождении через биообъект излучение рассеивается, поглощается и отражается. В связи с этим на вход оптического детектора приходит существенно меньшая мощность излучения.

Выбор длин волн источников излучения определяется составом хромофоров биоткани и их спектральными характеристиками. В области 650-900 нм наибольший вклад в поглощение вносят окигемоглобин, дезоксигемоглобин и вода (в силу значительных концентраций последней в мягких тканях, 70-80%). Функциональные изменения в большей степени степени определяются изменениями концентраций окси-(Δ [O₂Hb]) и дезоксигемоглобина (Δ [HHb]). Вклад других биологических хромофоров в ослабление излучения биотканями незначителен ввиду малости их концентраций и изменений последних, либо малости поглощения на длинах волн К-БИК.

Для пространственно разнесенных источника света и приемника, например, два волоконных световода, установленных перпендикулярно поверхности ткани, глубина проникновения излучения определяется функцией распределения длин путей фотонов для фотонов, мигрирующих от источника к приемнику. Область наиболее вероятного направления миграции фотонов имеет форму «банана» (рис. 3) и достигает максимальной глубины z^{max} , которая определяется расстоянием между источником и приемником r_{sd} [6]:

$$z^{\max} \approx \left(\frac{1}{2\sqrt{2}}\right) r_{sd} \tag{1}$$

Технические решения с «непрерывным» режимом излучения позволяют получать количественные оценки StO_2 , $\Delta[O_2Hb]$ и $\Delta[HHb]$ на основании модифицированного закона Бугера-Ламберта-Бера в геометрии обратного рассеяния в различные моменты времени *t*:

$$OD(t,\lambda) = -\log_{10}\left(\frac{I(t,\lambda)}{I_0(t,\lambda)}\right) = \sum_i \varepsilon_i(\lambda)c_i(\lambda)DPF(\lambda)r + G(\lambda),$$
(2)

где OD – оптическая плотность – функция, зависящая от концентраций хромофоров (c_i , мкМ) и их молярных коэффициентов экстинкции (ε_i , мкМ⁻¹см⁻¹); DPF — параметр дифференциального пробега, учитывающий увеличение длины пути миграции фотонов за счет рассеяния (безразмерная величина); r - расстояние между источником и приемником (см); λ – длина волны источника излучения (нм); G — параметр затухания, учитывающий потерю интенсивности излучения из-за рассеяния на различных структурных элементах биоткани. Индекс «i» указывает на учет исследуемых хромофоров, обычно это оксигемоглобин и дезоксигемоглобин; *I*₀ обозначает интенсивность падающего света.

Предполагая, что параметр G практически не изменяется времени, можно пренебречь им при определении изменения оптической плотности $\Delta OD(\Delta t, \lambda) = OD(t_1, \lambda) - OD(t_0, \lambda)$ во времени относительно начального момента времени t_0 . Интенсивность источника I_0 считается постоянной. При таких допущениях из формулы (2) следует:

$$\Delta OD(\Delta t, \lambda) = -\log_{10}\left(\frac{I(t_1, \lambda)}{I(t_0, \lambda)}\right) = \sum_i \varepsilon_i(\lambda) \Delta c_i(\lambda) DPF(\lambda)r$$
(3)

где $\Delta c_i(\lambda) = c_i(t_1) - c_i(t_0)$ – изменение концентрации *i*-го хромофора во времени.

Чтобы получить изменения концентраций двух форм гемоглобина, решается уравнение (3) относительно Δ[O₂Hb] и Δ[HHB]:

$$\begin{bmatrix} \Delta[HHb] \\ \Delta[O_2Hb] \end{bmatrix} = (r)^{-1} \begin{bmatrix} s_{HHb,\lambda 1} & s_{O2Hb,\lambda 1} \\ s_{HHb,\lambda 2} & s_{O2Hb,\lambda 2} \end{bmatrix}^{-1} \begin{bmatrix} \Delta OD(\Delta t,\lambda 1)/DPF(\lambda 1) \\ \Delta OD(\Delta t,\lambda 2)/DPF(\lambda 2) \end{bmatrix}$$
(4)

Для выбора источников и приемников излучения проводится светоэнергетический расчет ослабления излучения биологическими тканями. Предельно допустимая средняя мощность P_0 непрерывного лазерного излучения, проходящего через ограничивающую апертуру, согласно [5], составляет 5 мВт. Оптимальные расчетные значения длины волн источников излучения для определения концентраций двух хромофоров (Δ [O₂Hb] и Δ [HHb]) в соответствии с [1] составляют λ_1 =690 нм, λ_2 =830 нм.

Интенсивность излучения $I_0=P_0/S$ определяется через мощность P и площадь апертуры S. Результаты светоэнергетического расчета, проведенного на основании модифицированного закона Бугера-Ламберта-Бера, представлены в таблице 1. Площадь апертуры источника принималась круглой с диаметров 3 мм. Параметр **DPF** принимался в расчетах равным 5,93 [6]; μ_{α} – коэффициент поглощения (см⁻¹); r_1 и r_2 – расстояния между источником и приемником (см), μ'_g - транспортный коэффициент рассеяния (см⁻¹). Значения μ_{α} и μ'_g соответствуют оптическим параметрам калибровочных блоков тканевого оксиметра OxiplexTS («ISS Inc.», США), используемым в качестве твердых фантомов биологических тканей.

Молодежный научно-технический вестник ФС77-51038, ISSN 2307-0609

	λ 1= 69	90 нм	λ ₂ =830 нм	
	$\mu_{\alpha} = 0,104 \text{ cm}^{-1}; \ \mu'_{s} = 9,6 \text{ cm}^{-1}$		$\mu_a = 0,099 \text{ cm}^{-1}; \ \mu_s^t = 8,6 \text{ cm}^{-1}$	
	г1 =2 см	r 2=3 см	г 1=2 см	<i>г</i> ₂ =3 см
$\frac{I}{I_0}$	2,81 · 10 ⁻¹	1,52 · 10 ⁻¹	2,98 · 10 ⁻¹	1,66 · 10 ⁻¹
$-log_{10}\left(\frac{l}{l_0}\right)$	0,55	0,82	0,53	0,78
Р	1,40 · 10^{−3} В т	7, 58 · 10^{−4} B т	1,49 · 10^{−3} B t	8,28 · 10 ^{−4} Br

Результаты свето-энергетического расчета

Этап 3. Выбор конструкции датчика для картирования

Анализ литературных данных [2], [3], [4] показал, что конструкция и геометрия датчика определяются следующими параметрами: необходимой глубиной зондирования биоткани; расстоянием между источником и приемником; размерами области картирования; геометрией расположения источников и приемников; количеством точек измерения, необходимым пространственным разрешением; требуемой частотой обновления формируемого при картировании изображения.

Для картирования в области двигательной коры головного мозга были сформулированы следующие требования к конструкции, которые приведены в таблице 2.

В результате проведения третьего этапа были сформулированы основные требования к датчику и разработана планарная схема размещения, показанная на рисунке 4.

Рис.4. Планарная схема разрабатываемого датчика: красным цветом показаны источники излучения (в каждой точке по 2 источника с различными длинами волн), серым цветом показаны фотоприемники

Этап 4. Экспериментальные исследования элементарной измерительной ячейки

Для проведения экспериментальных исследований была собрана элементарная измерительная ячейка источник-приемник на основе платы DFRDuino Uno с микроконтроллером ATmega 328p фирмы Atmel. В качестве источников излучения использовались лазерные модули фирмы «Komoloff» с длинами волн: 635 нм и 780 нм (мощностью излучения 5 мВт и 3 мВт соответственно), в качестве приемника излучения использовался фотодиод ФД-7К. Выбор данных компонентов был основан на их доступности и распространенности.

Основные характеристики используемого фотодиода ФД-7К приведены в таблице 3.

Таблица 2

Обоснование конструкции датчика для картирования параметров локального интракраниального кровотока

Основные параметры	Чем определяются?	Расчетное уравнение или обоснование	Значение
Необходимая	Биообъект (БО): его	$z^{\max} \approx \left(\frac{1}{2\sqrt{2}}\right) r_{sd}$	1,5-2,0 см
глубина	оптические свойства и		1 см – для
зондирования	особенности строения		новорожден-

Молодежный научно-технический вестник ФС77-51038, ISSN 2307-0609

		<i>r_{sd}</i> -расстояние между источником и детектором	ных
Размеры области картирования → датчика	БО	Исходя из <i>г_{sD1}</i> и <i>г_{sD2}</i> , расстояний источник- приемник	8 × 6,8 см
Достаточное (необходимое пространствен- ное разрешение)	Разрешение определяется плотностью измерений, приходящихся на один пиксель получаемого изображения. Не зависит от общего количества точек измерений	Достаточно трех перекрывающихся измерений на каждый пиксель изображения	Минимальное достижимое значение соответствует 5 мм
Геометрия датчика (расположение источников и приемников)	БО	Область линии, соединяющей точки С3 и С4 ЭЭГ отведений	Гексагональная
Количество точек измерения	Количество пар источник- детектор	[2], [4]	50
-	Геометрия и строение БО,		
Расстояние источник- приемник	динамический диапазон (чувствительность) приемников излучения, соотношение сигнал-шум (SNR)	$r_{SD} > 1$ см $r_{SD} pprox 2 - 4$ см	$r_{SD1} = 2,0$ см $r_{SD2} = 3,4$ см
Расстояние источник- приемник Необходимое количество длин волн	динамический диапазон (чувствительность) приемников излучения, соотношение сигнал-шум (SNR) Количество концентраций хромофоров, их спектральные различия	<i>r_{sD}</i> > 1 см <i>r_{sD}</i> ≈ 2 – 4 см Молярные спектры поглощения оксигемоглобина и дезоксигемоглобина	<i>r</i> _{SD1} = 2,0 см <i>r</i> _{SD2} = 3,4 см 2 длины волны: 690, 830 нм 8 источников на каждую из длин волн

Таблица З

Основные характеристики используемого фотоприемника

Тип	Материал	Спектральная область чувствитель- ности	λ _{тах} чувствитель- ности	Интегральная чувстви- тельность по эталонному излучателю	Размеры светочувстви- тельного элемента
-----	----------	--	---	--	---

ФД-7К	Si	4001200 нм	800 нм	0,47 мА/лм	Диаметр светочувстви-
					тельного элемента – 10 мм

Измерения проводились на твердых силиконовых фантомах – калибровочных блоках тканевого оксиметра компании ISS, Inc., США - имитирующих оптические свойства биологических тканей, мышечной и тканей головы, с помощью параметров μ_{a} и μ'_{s} (см. табл. 4), соответствующих указанным тканям, и на различных участках предплечья и ладони *in vivo*, что показано на рисунке 5.

Таблица 4

Оптические параметры фантома 1 (мышечный)			Оптические параметры фантома 2 (церебральный)	
Длина волны	Коэффициент поглощения µ _a , см ⁻¹	Транспортный коэффициент рассеяния μ_s ', см ⁻¹	Коэффициент поглощения µ _a , см ⁻¹	Транспортный коэффициент рассеяния μ_s ', см ⁻¹
690 нм	0,135	5	0,104	9,6
830 нм	0,131	4,3	0,099	8,6

Оптические свойства фантомов биологических тканей

Для проведения тестирования измерительной ячейки на тканях головы необходимо было обеспечить оптоволоконный подвод излучения к биообъекту и отвод оптического излучения от БО, что представляет собой отдельную исследовательскую и технологическую задачу, решение которой позволит уменьшить влияние волосяного покрова на ослабление оптического излучения в области исследования проекции коры на поверхность головы. А также сделает возможным использование датчика во время функциональных нагрузок, сопровождающихся двигательной активностью, например, у спортсменов. Возможный вариант подвода оптического излучения показан на рисунке 6.

Рис.5. Экспериментальные исследования элементарной измерительной ячейки: I – проведение измерений на фантомах с известными оптическими параметрами и II - на различных участках предплечья и ладони *in vivo*

Рис. 6. Вариант оптоволоконного подвода излучения к исследуемому БО

Этап 5. Разработка алгоритмов картирования по глубине и по поверхности

Возможны два варианта формирования гемодинамических карт: по поверхности исследуемого БО и по глубине. Для визуализации функциональных изменений гемодинамических параметров были разработаны, реализованы в среде MatLab и

протестированы универсальные алгоритмы для построения гемодинамических карт по глубине (при измерениях линейным многодистантным датчиком OxiplexTS («ISS, Inc.», США)) и по поверхности (планарным датчиком - для модельных сигналов). Картирование по глубине позволяет, например, локализовать гематомы, определить индивидуальную оптимальную глубину зондирования.

Ключевые этапы обработки регистрируемых данных показаны на рисунке 7, а результаты работы алгоритмов показаны на рисунках 8 и 9.

Рис. 7. Ключевые этапы обработки регистрируемых данных

Для тестирования алгоритмов картирования по поверхности были заданы модельные сигналы, отражающие изменение концентрации общего гемоглобина (*[tHb]*, мкМ) в зависимости от времени (*t*, с). Сигналы, показанные на графике зеленым и красным цветом отражают изменения, происходящие за счет пульсовой и дыхательной составляющих и имеют различные постоянные уровни и различные амплитуды составляющих сигнала. Сигнал, показанный синим цветом, содержит медленные гемодинамические изменения в результате индуцированной деятельности мозга (частота изменения тренда f=0,005 Гц, значительно большая амплитуда). На рисунке 9 показаны этапы формирования пространственной карты и обработки полученного изображения (отдельно взятые кадры).

Рис.8. Построение гемодинамических карт: визуализация распределения контролируемых параметров по глубине в зависимости от расстояния источник-приемник при проведении испытуемым функционального теста

Рис. 9. Построение гемодинамических карт на модельном сигнале: визуализация распределения контролируемого параметра по поверхности (показаны результаты работы алгоритма на разных этапах)

Выделение контура области функциональной активности, гемодинамических изменений, и вычисление координат этого контура позволит автоматизировать сравнение изображений, полученных в различные моменты времени. Это дает возможность оценить пространственные изменения концентраций в динамике при проведении сложных экспериментов и функциональных тестов (например при исследованиях мелкой моторики), когда могут быть задействованы различные зоны активации коры головного мозга.

Результаты и выводы

Значения регистрируемой интенсивности излучения зависят от оптических свойств исследуемого объекта, фантома или биоткани, а также от интенсивности источника излучения, разной для используемых источников. Инвариантной к исходной мощности излучения величиной, отражающей оптические свойства тестируемого объекта, является показатель экспоненты, оцениваемый с помощью аппроксимации экспериментальных значений интенсивности на разных расстояниях между источником и приемником.

Результаты экспериментальных исследований представлены на рисунке 10.

Рис. 10. Экспериментальное исследование сред с разными оптическими свойствами: зависимость интенсивности излучения от расстояния между источником и приемником

На фантомах (калибровочных блоках) и на биологических тканях in vivo наблюдалось экспоненциальное затухание интенсивности излучения с расстоянием, меньшие значения интенсивности и большая крутизна экспоненты при большем ослаблении (рис.10). Данные экспоненты позволяют рассчитать такой параметр, как *DPF* Полученные экспериментальные результаты не противоречат литературным данным.

На рисунке 11 представлены динамические измерения на участке ладони *in vivo*. Данные регистрировались в покое на двух длинах волн, но не синхронизировано во времени. По зарегистрированным средним пульсовым колебаниям интенсивностям было рассчитано значение артериальной сатурации, составившее 94%. По амплитуде дыхательных колебаний возможна оценка насыщения венозной крови кислородом. Одномоментные измерения на двух длинах волн позволят проводить оценку локальной тканевой сатурации *StO*₂ и локальных изменений во времени $\Delta[O_2Hb]$ и $\Delta[HHb]$.

Рис. 11. Исследование динамики локального кровотока на двух длинах волн

Таким образом, по результатам работы можно сделать следующие выводы:

- определены основные факторы, влияющие на конструкцию и выбор параметров оптического датчика для картирования в спектрофотометрии;
- для элементарной измерительной ячейки датчика был рассчитан и собран макет для экспериментальных исследований;

- проведены экспериментальные исследования на биологических тканях и их фантомах;
- подтверждена работоспособность измерительной ячейки и возможность оценки физиологических параметров, отражающих локальные гемодинамические изменения;
- 5) предложены алгоритмы построения карт и их программная реализация для картирования по глубине и по поверхности.

Список литературы

- Scholkmann F., Kleiser S., Metz A. J., Zimmermann R., Pavia J. M., Wolf U., Wolf. M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology // NeuroImage. 2014. Vol. 85, №1. P. 6-27
- Joseph D.K., Huppert T.J., Franceschini M.A., et al. Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging // Appl. Opt. 2006. Vol. 45, № 31. P. 1-10
- Tian F., Alexandrakis G, Liu H. Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution // Appl. Opt. 2009. Vol. 48, №13. P. 1-9
- Boas D. A., Chen K., Grebert D., Franceschini M. A. Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans // OPTICS LETTERS. 2004. Vol. 29, №13. P. 1-3
- ГОСТ Р 50723-94 Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий. Введ. 01.01.96. М.: Изд-во стандартов, 1995. 37 с.
- Оптическая биомедицинская диагностика. В 2 т. Т. 1: пер. с англ. / под ред. B.B. Тучина. М: ФИЗМАТЛИТ, 2007. 560 с. [Tuchin V. V. Handbook of Optical Biomedical Diagnostics. Washington: SPIE PRESS, 2002. 1110 p.].