электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

10, октябрь 2015

УДК 629.039.58

Синхронизация программных пакетов «Магистраль-город 3.0» и УПРЗА «Эколог 3.0» и применение их в исследовании участка крупной магистрали

Султанов С.А., студент Россия 105005,г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Экология и промышленная безопасность»

Пупышева Е.В. студент Россия 105005,г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Экология и промышленная безопасность»

Научный руководитель: Кирикова О.В., ст. преподаватель кафедра «Экология и промышленная безопасность», Россия 105005, г. Москва, МГТУ им. Н.Э. Баумана E9@mx.bmstu.ru

Одним из основных источников загрязнения атмосферы в крупных городах являются автотранспортные средства. Автомобильный транспорт занимает ведущее место в удовлетворении постоянно возрастающих потребностей в перевозках пассажиров и грузов. Однако, с выхлопными газами автомобилей в атмосферу попадают окислы азота, окись и двуокись углерода, различные углеводороды, в том числе ароматические, соединения свинца, сажа, на которую осаждаются токсичные примеси, превращая ее в токсичную, окислы серы и другие примеси.

Наибольшие концентрации токсичных примесей содержатся в приземных слоях атмосферного воздуха в зоне оживленных транспортных магистралей и перекрестков. Здесь человек находится в эпицентре экологического неблагополучия. Климатические и географические особенности территории могут усиливать или снижать негативное воздействие отработавших газов автомобиля на человека. Особенно велика опасность в случае расположения районов города в котловинной местности и в безветренную погоду, когда велика опасность образования смога. Поэтому борьба за снижение негативного воздействия токсичных компонентов отработавших газов автомобильных двигателей является актуальной проблемой.

Целью проведённой научно-исследовательской работы является ознакомление с программным пакетом «Магистраль-город 3.0» и его синхронизация с пакетом УПРЗА «Эколог 3.0», разработка практикума, позволяющего студентам освоить данную программу, проведение собственного исследования на участке магистрали с расчётом загрязнений и построением полей рассеивания в УПРЗА «Эколог 3.0».

Расчеты выбросов выполняются для следующих вредных веществ: оксид углерода (СО), оксиды азота (в пересчете на диоксид азота), углеводороды (СН), сажа, диоксид серы (SO), формальдегид, бенз(а)пирен. Программа может быть использована природоохранными и контролирующими организациями, а также градостроительными организациями при планировании будущих застроек и прокладке новых транспортных магистралей. В нашей работе мы попробовали использовать ее в учебных целях.

В районах перекрёстка автомобилями выбрасывается наибольшее количество вредных веществ за счет торможения и остановки перед запрещающим сигналом светофора и последующего его движения в режиме «разгона» при разрешающем сигнале светофора. В программе выбираются участки автомагистралей перед светофором, на которых образуется очередь из автомобилей, работающих на холостом ходу в течение времени действия запрещающего сигнала светофора. Подсчитывается количество различных автомобилей на перекрестках и по формуле (1) рассчитывается суммарный выброс M для магистрали (или ее участка):

$$M = \sum_{1}^{n} (M_{\Pi_{1}} + M_{\Pi_{2}}) + M_{L_{1}} + M_{L_{2}} + \sum_{1}^{m} (M_{\Pi_{3}} + M_{\Pi_{42}}) + M_{L_{3}} + M_{L_{4}}, \quad (1)$$

где

 M_{Π_1} , M_{Π_2} , M_{Π_3} , M_{Π_4} - выброс в атмосферу автомобилями, находящимися в зоне перекрестка при запрещающем сигнале светофора;

 M_{L_1} , M_{L_2} , M_{L_3} , M_{L_4} - выброс в атмосферу автомобилями, движущимися по данной автомагистрали в рассматриваемый период времени;

п и m - число остановок автотранспортного потока перед перекрестком соответственно на одной и другой улицах, его образующих, за 20-минутный период времени;

Выброс і-ого загрязняющего вещества (г/с) движущимся автотранспортным потоком на автомагистрали (или ее участке) с фиксированной протяженностью L (км) определяется по формуле:

$$M_{L_i} = \frac{L}{3600} \sum_{1}^{k} M_{ki}^{\Pi} \cdot G_k \cdot k_{V_1} , \qquad (2)$$

где

 M_{ki}^{Π} (г/км) - пробеговый выброс і-го вредного вещества автомобилями k-й группы для городских условий эксплуатации, определяемый по табл. 1;

k - количество групп автомобилей;

 G_k (1/час) - фактическая наибольшая интенсивность движения, т.е. количество автомобилей каждой из К групп, проходящих через фиксированное сечение выбранного участка автомагистрали в единицу времени в обоих направлениях по всем полосам движения;

 kv_{ki} — поправочный коэффициент, учитывающий среднюю скорость движения транспортного потока;

 $r_{ki}(\kappa m/\text{час})$ — коэффициент скорости на выбранной автомагистрали (или ее участке), определяемый по табл. 2;

L (км) – протяжённость автомагистрали (или ее участка), из которого исключена протяженность очереди автомобилей перед запрещающим сигналом светофора.

Таблица 1 Пробеговые выбросы $M_L(\Gamma/\kappa M)$ для различных групп автомобилей

							E	Выбро	СЫ		
Наименование группы автомобилей	№ группы	СО	NO_{x}	(в пересчете на	$NO_2)$	СН	Сажа	SO_2	Формальдегид	Соединения свинца	Бенз(а)пирен
1	2	3		4		5	6	7	8	9	10
Легковые	I	19,0		1,8		2,1	-	0,06	0,006	0,019	$1,7 \cdot 10^{-6}$
Легковые дизельные	Ід	2,0		1,3		0,25	0,1	0,21	0,003		-
Грузовые карбюраторные с	II	69,4		2,9		11,5	-	0,20	0,020	0,026	$4,5 \cdot 10^{-6}$
грузоподъемностью до 3 т											
(в том числе, работающие на											
сжиженном нефтяном газе) и											
микроавтобусы											
Грузовые карбюраторные с	III	75,0		5,2		13,4	-	0,22	0,022	0,033	6,3 · 10 ⁻⁶

							E	Выбро	СЫ		
Наименование группы автомобилей	№ группы	СО	NO_{x}	(в пересчете на	NO_2)	СН	Сажа	SO_2	Формальдегид	Соединения свинца	Бенз(а)пирен
грузоподъемностью более 3 т (в											
том											
числе, работающие на сжиженном											
нефтяном газе)											
Автобусы карбюраторные	IV	97,6		5,3		13,4	-	0,32	0,03	0,041	6,4 · 10 ⁻⁶
Грузовые дизельные	V	8,5		7,7		6,0	0,3	1,25	0,21	-	$6.5 \cdot 10^{-6}$
Автобусы дизельные	VI	8,8		8,0		6,5	0,3	1,45	0,31	-	$6,7 \cdot 10^{-6}$
Грузовые газобаллонные,	VII	39,0		2,6		1,3*	1	0,18	0,002	-	$2,0 \cdot 10^{-6}$
работающие на сжатом природном											
газе											

^{* -} значение выброса за вычетом метана

Таблица 2

Значения коэффициентов r_{ki}

		Скорость движения (V, км/час)											
	10	15	20	25	30	35	40	45	50	60	75	80	100
r _{ki}	1,35	1,28	1,2	1,1	1,0	0,88	0,75	0,63	0,5	0,3	0,45	0,5	0,65

Примечание: для диоксида азота значение r_{ki} принимается постоянным и равным 1 до скорости 80~кm/чаc.

Выброс і-го загрязняющего вещества (3B) в зоне перекрёстка при запрещающем сигнале светофора M_{ni} определяется по формуле:

$$M_{\Pi_i} = \frac{P}{40} \sum_{n=1}^{N_{\text{II}}} \sum_{k=1}^{N_{\text{rp}}} \left(M'_{\Pi_{i,k}} G_{k,n} \right) \quad \text{г/мин}, \tag{3}$$

где

P (мин.) –продолжительность действия запрещающего сигнала светофора (включая желтый цвет);

 $N_{\rm II}$ - количество циклов действия запрещающего сигнала светофора за 20-ти минутный период времени;

 $N_{\mbox{\scriptsize гр}}$ - количество групп автомобилей;

 $M'_{\Pi_{i,k}}$ (г/мин) - удельный выброс i-го 3B автомобилями, k-ой группы, находящихся в «очереди» у запрещающего сигнала светофора;

 $G_{k,n}$ - количество автомобилей k группы, находящихся в «очереди» в зоне перекрестка в конце n-го цикла запрещающего сигнала светофора.

Значения $M'_{\Pi_{i,k}}$ определяются по таблице. 3, в которой приведены усредненные значения удельных выбросов (г/мин), учитывающие режимы движения автомобилей в районе пересечения перекрестка (торможение, холостой ход, разгон), а значения P, N_{IJ} , G_k - по результатам натурных обследований.

					В	ыброс,	г/мин		
Наименование группы автомобилей	№ группы	СО	$NO_{\rm x}$ (в пересчете на NO_2)	СН	Сажа	SO_2	Формальдегид	Соединения	Бенз(а)пирен
Легковые	I	3,5	0,05	0,25	-	0,01	0,0008	0,0044	$2,0 \cdot 10^{-6}$
Легковые дизель-ные	Ід	0,13	0,08	0,06	0,035	0,04	0,0008	-	-
Грузовые карбюра-торные с грузо-подъемностью до 3 т (в том числе работающие на сжи-женном нефтяном газе) и микроавтобусы	П	6,3	0,075	1,0	-	0,02	0,0015	0,0047	4,0 · 10 ⁻⁶
Грузовые карбюраторные с грузоподъемностью более 3 т (в том числе работающие на сжиженном нефтяном газе)	III	18,4	0,2	2,96	-	0,028	0,006	0,0075	
Автобусы карбюраторные	IV	16,1	0,16	2,64	-	0,03	0,012	0,0075	$4,5 \cdot 10^{-6}$
Грузовые дизельные	V	2,85	0,81	0,3	0,07	0,075	0,015	-	$6,3 \cdot 10^{-6}$
Автобусы дизельные	VI	3,07	0,7	0,41	0,09	0,09	0,020	-	6,4 · 10 ⁻⁶
Грузовые газобаллонные,	VII	6,44	0,09	0,26	-	0,01	0,0004	-	3,6 · 10 ⁻⁶

		Выброс, г/мин											
Наименование группы автомобилей	№ группы	СО	NO_{x}	(в пересчете на	NO_2)	СН	Сажа	SO_2	Формальдегид	Соединения свинца	Бенз(а)пирен		
работающие на сжатом						*							
природном газе													

⁻ значение выброса за вычетом метана

На каждой автомагистрали (или ее участке) фиксируются следующие параметры:

- ширина проезжей части, (в метрах);
- количество полос движения в каждом направлении;
- протяженность выбранного участка автомагистрали (в км) с указанием улиц, ограничивающих данную автомагистраль (или ее участок);
- средняя скорость автотранспортного потока с подразделением на три основные категории: легковые, грузовые и автобусы (в км/час).

Программа «Магистраль – город 3.0», рассматриваемая в данной работе предусматривает достаточно простой интерфейс и не требует введения справочных данных (рис. 1 и рис. 2).

робеговый выброс В зоне перекрестка									
		Выброс, г/км							
Наименование группы автомобилей	co	NOx, в пересчете на NO2	СН	Сажа	S02	'ормальдегі	Соединения свинца	ўенз(а)пирен	
Легковые	19	1,8	2,1	0	0,065	0,006	0,019	1,7E-6	
Легковые дизельные	2	1,3	0,25	0,1	0,21	0,003	0	0	
Грузовые карбюраторные до	69,4	2,9	11,5	0	0,2	0,02	0,026	4,5E-6	
Грузовые карбюраторные от	75	5,2	13,4	0	0,22	0,022	0,033	6,3E-6	
Автобусы карбюраторные	97,6	5,3	13,4	0	0,32	0,03	0,041	6,4E-6	
Грузовые дизельные	8,5	7,7	6	0,3	1,25	0,21	0	6,5E-6	
Автобусы дизельные	8,8	8	6,5	0,3	1,45	0,31	0	6,7E-6	
Грузовые газобаллонные	39	2,6	1,3	0	0,18	0,002	0	2E-6	

Рис. 1. Значения выбросов для различных групп автомобилей

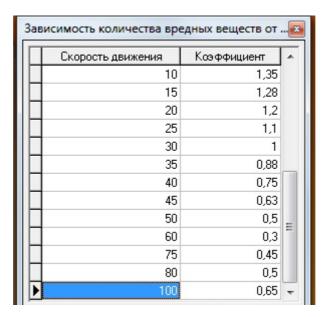


Рис. 2. Зависимость количества вредных веществ от скорости движения

Для начала проведения расчетов создаем объект и участок, который будет анализироваться программой (рис. 3).

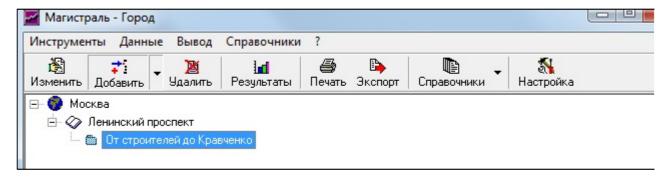


Рис. 3. Выбор объекта и участка, анализируемого программой

Далее задаются координаты рассматриваемого участка и его средняя ширина (рис. 4).

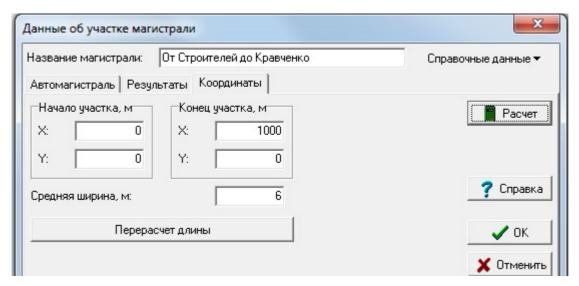


Рис. 4. Данные об участке магистрали

Для обучения студентов работе в данной программе были разработаны задания разной сложности, раскрывающие возможности программы:

- 1. Загруженность участка магистрали шириной 4 метра около $1,25 \frac{\text{легк.машина}}{\text{мин*км}}$ (0,5 в левом направлении, остальные в правом). Рассчитайте выбросы на перегоне в 1 км, если скоростной режим 60 км/ч.
- 2. На участке магистрали длиной в 1 км имеется перекрёсток. Светофор каждую минуту меняет сигнал с запрещающего на разрешающий и обратно. Во время работы стоп-сигнала выстраивается очередь из машин длиной 6 метров на левом и 8 метров на правом перекрёстке. Известно, что за 20 минут в очереди на левом перекрёстке простояли 10 легковых машин, а на правом 15. Всего по магистрали со скоростным режимом 60 км/ч появились 33 легковые машины, 20 из которых ехали в правом направлении.

Рассчитайте выбросы на описанном участке.

- 3. На территории предприятия есть две пересекающиеся километровые двухполосные дороги для грузового транспорта. На перекрёстке стоит светофор, дающий минутный стоп-сигнал раз в 4 минуты. Выбрать произвольное количество грузовых машин в очереди и в движении и рассчитать для выбранного случая выбросы.
- 4. На участке дороги длиной в 1000 м и шириной 6 м за 20 минут проехали легковые (15 в правом и 7 в левом направлении) и грузовые карбюраторные, весом до трёх тонн (8 в правом и 3 в левом направлении), машины со скоростью 60 км/ч; а также тяжёлые грузовые карбюраторные (3 в правом и 1 в левом направлении) со скоростью 40 км/ч.

Также на этом участке есть перекрёсток со светофором, дающим минутный стопсигнал раз в 5 минут, что создаёт очередь перед ним на левом перекрёстке из 5 легковушек, 3 «лёгких» и 1 «тяжёлой» грузовой машины (15 метров), и на правом перекрёстке – из 10 легковых, 5 «лёгких» и 3 «тяжёлых» грузовых (50 метров).

Рассчитайте выбросы на описанном участке дороги.

Был выявлен алгоритм импорта данных из программы «Магистраль. Город» в УПРЗА «Эколог»:

- 1) Для того, чтобы в УПРЗА «Эколог» появилась возможность приёма файла, методика «Магистраль-Город» должна быть зарегистрирована в нём. Поэтому после произведения расчёта выбросов в программе «Магистраль-Город» следует перейти в меню «Инструменты» «Настройка» «Эколог и ПДВ» и произвести регистрацию;
- 2) После произведения расчёта выбросов автотранспорта и их сохранения экспортировать результаты в отдельный файл: «Экспорт», в выпадающем меню «Программа для экспорта данных» выбрать «любой каталог», затем выбрать папку для сохранения файла («Каталог для экспорта»);
- 3) В УПРЗА «Эколог» перейти в «Вариант исходных данных» и произвести приём из внешней методики.

Также было проведено собственное исследование участка ТТК. Была проведена 20-минутная съёмка движения автотранспорта на участке третьего транспортного кольца (ТТК) длиной 300 метров в дневной и ночной периоды (14.00 и 01.00). По видеозаписи было подсчитано отдельно количество легковых машин, грузовых до 3 тонн и от 3 тонн и автобусов. Скоростной режим на ТТК – 60 км/ч и 80 км/ч. Средняя скорость легковых машин была принята 75 км/ч, грузовых до 3 тонн – 60 км/ч, грузовых от 3 тонн и автобусов – 50 км/ч.

Исследовался участок ТТК, расположенный в непосредственной близости от автоматической станции контроля загрязнения атмосферы «Спартаковская пл.», данные с которой отображаются на сайте ГПБУ «Мосэкомониторинг» (Департамент природопользования и охраны окружающей среды города Москвы) в режиме реального времени.

После подсчета количества автомобилей различных видов на участке ТТК в ночное и дневное время и проведения расчетов выбросов в программе «Эколог-3» нами построены поля рассеивания выбросов с учетом фоновых загрязнений. Результаты расчета мы сравнили с показаниями автоматической станции «Мосэкомониторинга» и с показаниями газоанализатора.

В таблице 4 представлены результаты подсчета количества автомобилей различных видов в левом и правом направлении на участке ТТК.

 Таблица 4

 Данные видеосъёмок в дневной и ночной периоды

Тип автомобиля	Праз направл		Лев направл		Скорость,	
	14.00	01.00	14.00	01.00	. KM/ 4	
Легковые	1693	49	1027	38	75	
Легковые дизельные	593	27	359	20	75	
Грузовые карбюраторные до 3 т.	11	1	9	1	60	
Грузовые карбюраторные от 3 т.	6	1	3	1	50	
Автобусы карбюраторные	1	0	1	0	50	
Грузовые дизельные	327	42	222	26	60	
Автобусы дизельные	15	2	6	0	50	

^{*}Погрешность подсчёта $\approx +8$ единиц для легковых машин, +4 для грузовых, +1 для автобусов.

В программе Магистраль-город 3.0 были рассчитаны выбросы загрязняющих веществ от описанного потока автотранспорта на указанном участке магистрали ТТК. Результаты расчёта представлены в таблице 5:

 Таблица 5

 Результаты расчёта выбросов автотранспорта в программе

 Магистраль-город 3.0

Вещество	24.03.2015 14.00 – 14.20	25.03.2015 01.00 - 01.20				
СО	1,52563333 г/с	0,09041583 г/с				
NO	0,09671567 г/с	0,00837958 г/с				
NO2	0,59517333 г/с	0,05156667 г/с				
NOx	0,74396667 г/с	0,06445833 г/с				
SO2	0,03043035 г/с	0,00285635 г/с				
СН (по безину)	0,15104292 г/с	0,00854292 г/с				
СН (по керосину)	0,09695312 г/с	0,01118229 г/с				
СН (по газу)	0 г/с	0 г/с				

Суммарный СН	0,24799604 г/с	0,01972521 г/с
Соединения свинца	0,00128778 г/с	0,00006604 г/с
Сажа	0,00794625 г/с	0,00071125 г/с
Формальдегид	0,00367881 г/с	0,00041053 г/с
Бенз(а)пирен	0,00000021 г/с	0,00000002 г/с

В ходе освоения программных пакетов был выявлен алгоритм экспорта данных из «Магистраль-Город» в УПРЗА «Эколог».

В качестве фоновых концентраций загрязняющих веществ были приняты концентрации, представленные в докладе о состоянии окружающей среды в городе Москве ГПБУ «Мосэкомониторинг» «Состояние атмосферного воздуха в городе Москве в четвертом квартале 2014 года» (Таблица 6).

Таблица 6 Фоновые концентрации некоторых веществ в воздухе г. Москва из доклада ГПБУ «Мосэкомониторинг»

Загрязняющее вещество	Среднее значение(мг/м ³⁾	Π Д $K_{c.c.,}$ (мг/м 3)
Оксид углерода	0,46	0,15
Диоксид азота	0,036	0.9
Оксид азота	0,034	0,57
Углеводороды	1,53	
Диоксид серы	0,004	0,08
Соединения свинца	0,032	0,53
Фенол	0,004	0,04

Спартаковская пл.

Вблизи автомагистралей

Концентрации в единицах ПДК м.р.

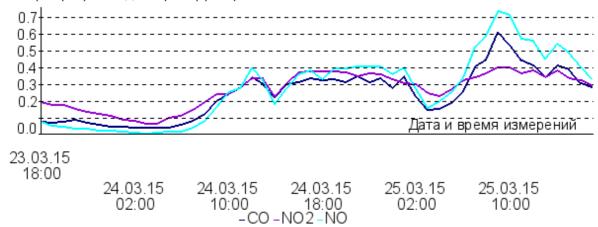


Рис. 5. График изменения концентраций загрязняющих веществ в течение суток

Если сравнивать данные расчёта и показания станции экологического мониторинга, то можно легко заметить сильные различия. Значения концентраций вредных веществ по данным автоматической станции гораздо меньше в дневной период и укладываются в нормы и чуть больше в ночной период, чем полученные при расчёте значения. Это объясняется рядом факторов:

- А) Программа «Эколог 3.0» рассчитывает *максимальные* концентрации вредных веществ, достижимые в расчётной точке на *средней линии магистрали* в двух метрах от земли при стечении худших обстоятельств (отсутствие ветра), истинные же концентрации будут меньше расчётных;
- Б) Условия определения концентраций в том и другом случаях были совершенно различные, а для произведения расчёта в рамках данной работы было принято множество допущений и округлений;
- В) Датчики автоматической станции расположены на расстоянии не менее чем в 10 метрах от магистрали и на высоте, значительно превышающей 2 метра от поверхности земли, где вредные вещества находятся уже в более разбавленном состоянии, нежели на расчётной высоте 2 м.

На примере исследования мы смогли убедиться, что состояние приземного слоя атмосферы вблизи крупных магистралей оставляет желать лучшего. Это постоянно увеличивающаяся проблема, требующая проведения различных мероприятий:

- 1. Уменьшения количества совокупного выброса токсичных веществ путем применения в автомобилях дожигателей и катализаторов выхлопа;
 - 2. Создание безсветофорного движения на автомагистралях.

В дальнейшем предполагается выполнение замеров с помощью газоанализатора на различных расстояниях и высотах от магистрали с целью сравнения расчетных и замеренных результатов, а также определения рассеивания токсичных веществ в атмосфере в зависимости от погодных условий.

Список литературы

- 1. Государственный комитет Российской Федерации по охране окружающей среды. Методика определения выбросов автотранспорта для проведения сводных расчётов загрязнения атмосферы городов. Режим доступа: http://www.gosthelp.ru/text/Metodikaopredeleniyavybro.html (дата обращения 01.06.2015).
- 2. Фирма «Интеграл». Программа «Магистраль-город» Версия 3.0. Руководство пользователя. Режим доступа: http://www.integral.ru/Integral/userguides/magistral_manual3.pdf (дата обращения 01.06.2015).
- 3. Унифицированная программа расчета загрязнения атмосферы «Эколог» Версия 3.0. Руководство пользователя. Режим доступа: http://www.integral.ru/Integral/userguides/magistral_manual3.pdf (дата обращения 01.06.2015).