МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

12, декабрь 2015

УДК 520.2:629.78

Моделирование процесса раскрытия антенны радиотелескопа

Акимова Н.Г., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, Аэрокосмический факультет, кафедра «Аэрокосмические системы»

> Научный руководитель: Щеглов Г.А., д.т.н., профессор Росиия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Аэрокосмические системы» bauman@bmstu.ru

Введение

Космический радиотелескоп (КРТ) представляет собой приёмную параболическую антенну, оснащённую аппаратурой усиления, приёма, преобразования и передачи научной информации на Землю. Целевой задачей КРТ является наблюдение и исследование источников комического радиоизлучения. Эти наблюдения могут оказаться бесценными для решения проблем происхождения, структуры и эволюции Вселенной [1].

Конструкция рефлектора КРТ выполняется с учетом необходимости размещения в сложенном состоянии под головным обтекателем ракеты-носителя с заданным внутренним диаметром, а также обеспечения необходимой точности отражающей поверхности после её развертывания. Исходя из этих требований разработан механизм раскрытия лепестка и подобраны проектные параметры.

Целью работы является анализ динамики раскрытия рефлектора антенны КРТ и получение характеристик переходного режима.

Задачи работы:

- Синтез механизма раскрытия лепестков КРТ
- Кинематический анализ механизма
- Динамический анализ механизма
- Анализ влияния времени раскрытия на параметры переходного процесса.

Расчетная схема

Конструкция антенны космического радиотелескопа представляет собой развертываемый 5 - метровый рефлектор, который в сложенном состоянии размещается в отсеке ракеты «Рокот» под головным обтекателем с внутренним диаметром 2,3 м. Отражающая поверхность формируется центральной частью зеркала диаметром 0,8 м и 20 радиальными лепестками – сегментами, синхронно раскрывающимися на орбите. Центральное зеркало и лепестки после раскрытия образуют параболоид вращения с заданными геометрическими параметрами. Общая схема конструкции рефлектора КРТ представлена на рис. 1.

Рис. 1. Конструкция рефлектора КРТ:

1 – привод; 2 – механизм развертывания; 3 – лепесток рефлектора;

4 – штанги опорные; 5 – фокальный модуль; 6 – малонаправленные антенны;

7 – центральное зеркало; 8 – опора

Лепесток рефлектора представляет собой склеенную трехслойную конструкцию, состоящую из алюминиевого сотового заполнителя и углепластиковых несущих слоёв с алюминиевым закладным элементом. Высота сотового заполнителя выбрана 26 мм, а несущих слоёв — 2 мм. Элементы механизма раскрытия изготовлены из углепластика.

Материалы других элементов конструкции, влияющих на точность контура рефлектора и положения фокального узла, выбирались размеростабильными.

В рамках работы синтезирован механизм раскрытия лепестка рефлектора, близкий к использованному на КА «Радиоастрон» [2]. Для решения задач структурного и кинематического анализа механизма раскрытия построена кинематическая схема (рис. 2), отражающая его строение и основные геометрические свойства звеньев.

Рис. 2. Кинематическая схема механизма:

центральное зеркало; 2 – поворотное кольцо; 3 – крестовина; 4 – водило;
5 – крестовина I; 6 – поворотная втулка I; 7 – ведомое коромысло;
8 – лепесток рефлектора; 9 –шатун; 10 – поворотная втулка II; 11 – крестовина II;
12 – ведущее коромысло

Механизм включает в себя следующие низшие вращательные кинематические пары A, B, C, D, E, F, G, H, I, J, K, L, M. Согласно известной формуле Сомова-Малышева степень подвижности пространственного механизма равна:

$$W = 6 \cdot n - 5 \cdot p_5 - 4 \cdot p_4 - 3 \cdot p_3 - 2 \cdot p_2 - p_1 = 1,$$
(1)

где k=13 - общее число звеньев, n=12 - число подвижных звеньев, p₅=13 – число вращательных КП. Число степеней свободы механизма равняется единице, следовательно,

пассивные связи и лишние степени свободы отсутствуют, и работа механизма полностью определяется углом поворота поворотного кольца.

Основными параметрами определяющие траекторию движения лепестка рефлектора являются угловые хода звеньев, представленные на рисунке 3, где $\alpha = 95^{\circ}$ угловой ход ведущего коромысла, $\beta = 83^{\circ}$ угловой ход ведомого коромысла, $\delta = 10^{\circ}$ конечный угол установки шатуна, $\gamma = 14^{\circ}$ угол между плоскостями вращения ведомого и ведущего коромысла. Максимальный угловой ход φ составляет 40 градусов. Начальный и промежуточный этапы раскрытия представлены на рис. 4. Характеристики звеньев механизма приведены в таблице 1.

Рис. 3. Эскиз раскрытия лепестка рефлектора:

1- начальное (сложение) положение; 2 - промежуточное положение;

3-конечное (рабочее) положение

Рис. 4. Этапы раскрытия:

1 - начальный этап, $\phi=0^\circ;\,2-$ промежуточный этап $\phi=28^\circ$

Таблица 1

~			_	_
Звено	Масса, кг	Jxx	Jyy	Jzz
$\mathbb{N}_{\underline{0}}$				
1	7,3	6.0493002089E+005	3.1024071688E+005	3.1024071688E+005
2	10	1.11839231E+006	5.6356348802E+005	5.6356340968E+005
3	0,03	3.9870251746	2.3321089634	2.3077627353
4	0,2	1560.2719914054	1560.2719914054	10.3672557568
5	0,03	5.7049616439	5.1326891261	2.8255211527
6	0,05	24.7903685147	20.1028570039	12.6753661247
7	0,2	3774.6345012253	3722.0996579982	62.8926696114
8	5	1.7942792032E+006	1.6799228668E+006	1.2539768023E+005
9	0,2	201.7383998868	201.6603593907	7.8198104316
10	0,05	26.909575366	22.9533060475	11.9635558406
11	0,03	5.145472061	4.4518084031	3.1696197214
12	0,2	4811.8854423068	4742.8722328855	81.2482027696

Характеристики звеньев механизма

Описание имитационной компьютерной модели

Для исследования работы механизма раскрытия лепестка рефлектора создана имитационная модель, которая позволяет получить характеристики переходного режима. Модель функционирует в программной среде ADAMS [3]. В сложенном состоянии жесткий лепесток расположен вдоль оси симметрии рефлектора над поверхностью центрального зеркала антенны. Под действием электромеханического привода лепесток переводится из сложенного состояния в рабочее и фиксируется в этом положении. Привод смоделирован в виде движущегося кольца, который, поворачиваясь на определённый угол, переводит лепесток из одного состояния в другое.

Модель учитывает геометрические размеры, массу и тензор инерции деталей, входящих в состав механизма, расположение и ориентацию шарниров. Структурная схема имитационной модели представлена на рис. 5. При обозначении шарниров используется внутренне обозначение ADAMS, где Fixed joint – неподвижное соединение, Revolute joint – вращательная кинематическая пара [3]. В созданной модели все звенья считаются абсолютно жёсткими телами. Считается, что раскрытие антенны происходит в невесомости. Трение в шарнирах не учитывается.

Кинематический анализ

С помощью имитационной модели был произведен кинематический анализ механизма и получены угловые скорости и ускорения звеньев. Угловая скорость поворотного кольца постоянна и равняется 0,1 град./с. Время работы механизма раскрытия составляет 400 с. Значения угловых скоростей и ускорений звеньев механизма приведены в таблице 2-3.Анализируя значения можно сделать вывод о том, что при постоянной угловой скорости поворотного кольца, происходит разгон конструкции.

Таблица 2

Звено,	Начальная угловая	Конечная угловая	Среднее значение
№	скорость, град./с	скорость, град./с	угловой скорости, град./с
4	0,1367	0,2743	0,2055
7	0,0274	0,4204	0,2239
8	0,0335	0,427	0,23025
9	0,0335	0,4271	0,2303
12	0,0299	0,4265	0,2282

Значения угловых скоростей звеньев механизма

Таблица З

Звено,	Начальное угловое	Конечное угловое	Среднее значение углового
$\mathbb{N}_{\underline{0}}$	ускорение, град./с ²	ускорение, град./с ²	ускорения, град./с ²
4	5,9949E-004	0,0018	0,0012
7	6,0853E-004	0,0051	0,00285
8	0,0011	0,0113	0,00615
9	0,0011	0,0113	0,00615
12	8,3794E-004	0,0019	0,00136

Значения угловых ускорений звеньев механизма

Динамический анализ

С помощью имитационной модели получены реакции в кинематических парах механизма. Результаты приведены в таблице 4. Сравнивая значения сил в начале и в конце процесса раскрытия видно, что при заданном законе движения, значения реакций в КП возрастают и достигают максимального значения после остановки поворотного кольца, причём наибольшее значение наблюдается в КП I, H.

Таблица 4

Реакции в кинематических парах механизма раскрытия лепестка

КП	Минимальное значение, Н	Максимальное значение, Н	Среднее значение, Н
А	9.5865E-004	0.0087	0.0048293
В	9.5865E-004	0.0087	0.0048293
С	9.5819E-004	0.0087	0.004829095
D	9.581E-004	0.0087	0.00482905
E	9.5795E-004	0.0087	0.004828975
F	6.7569E-004	0.0134	0.004837845
G	0.0014	0.0087	0.00505
Н	0.0022	2.3785	1.19035
Ι	0.0016	2.391	1.1963
J	6.3062E-004	0.0137	0.00716531
K	6.3037E-004	0.0137	0.0071651
L	6.3022E-004	0.0137	0.00716511
М	9.5867E-004	0.0087	0.0048293

Анализ влияния скорости движения поворотного кольца

В ходе динамического и кинематического анализа выявлено,что при постоянной скорости движения поворотного кольца наблюдается увеличение значений силовых и кинематических характеристик. Для более подробного анализа, рассмотрен процесс раскрытия механизма при различных угловых скоростях повротного кольца в наиболее нагруженных звеньях 8, 9 и кинематических парах I, H. Результаты приведены в таблице 5. Вид графика реакций в кинематических парах I, H при двух характерных угловых скоростях представлены на рис. 6.

Таблица 5

Угловая скорость	Время	Максимальное значение	Максимальное значение
поворотного кольца,	раскрытия, с	реакции в КП I, Н	реакции в КП Н, Н
град/с			
0,1	400	2.391	2.3785
0,2	200	9,839	9,7886
0,3	133,4	21,5139	21,4062
0,4	100	39,3561	39,1544
0,5	80	61,494	61,1787
0,6	66,68	79,3298	78,8829
0,7	57,14	110,8965	110,2849
0,8	50	157,4245	156,6174
0,9	44,4	178,4921	177,4864
1	40	245,9758	244,7147
2	20	607,9695	603,3242

Реакции в кинематической паре I, Н

Из полученных данных видно, что увеличение угловой скорости поворотного кольца приводит к увеличению значений реакций в шарнирах. Как видно из табл. 1 и рис. 6 увеличение угловой скорости в 10 раз приводит к значительному увеличению силовых характеристик, что может привести к разрушению конструкции. Развёртывание лепестков необходимо проводить при небольших угловых скоростях, чтобы избежать деформаций элементов механизма раскрытия.

Рис. 6. Значение реакций в КП I, Н при различных угловых скоростях поворотного кольца: а - при скорости 0,1 град/с; б – при скорости 1 град/с;

Заключение

Моделирование процесса раскрытия антенны космического радиотелескопа показало, что разработанный механизм раскрытия лепестков КРТ обеспечивает успешное развертывание антенны и обеспечивает необходимую точность отражающей поверхности, после развертывания. Полученные результаты кинематического и динамического анализа позволяют выявить зависимость значений реакций в шарнирах от скорости процесса раскрытия антенны. На основе этих данных можно выбрать наилучший закон движения привода и подготовить расчетные случаи для дальнейшего анализа конструкции с учетом податливости звеньев.

Список литературы

- S.D. Guest, S.Pellegrino A new concept for solid surface deployable antennas// Acta astronautica. 1996. V.38. No.2. p.103-113
- 2. Аставин А.С, Ковалев В.С. Создание конструкции крупногабаритного космического радиотелескопа. Вестник НПО имени С.А.Лавочкина, 2014, No. 24, 91–95.
- Basic ADAMS/Full Simulation (ADM 701) / М.: Московское представительство MSC.Software GmbH, 2005. – 754 с.