электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 62-1/-9

Энтропийно-статистический анализ холодильных циклов для шоковой заморозки

Серебряков Н.Ю., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Холодильная, криогенная техника и системы жизнеобеспечения»

Шамсутдинов И.Р., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Холодильная, криогенная техника и системы жизнеобеспечения»

Научный руководитель: Шишов В.В., к.т.н., доцент кафедра «Холодильная, криогенная техника и системы жизнеобеспечения», Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана bauman@bmstu.ru

Энтропийно-статистический метод позволяет определить необходимые затраты энергии на компенсацию «производства» энтропии вследствие необратимости рабочих процессов в различных элементах (узлах) низкотемпературных установок и указывает, таким образом, на пути их совершенствования.

В статье методом энтропийно-статистического анализа исследованы циклы (простой одноступенчатый, одноступенчатый цикл с теплообменником, цикл с экономайзером и двухступенчатый с неполным промежуточным охлаждением) парокомпрессионной холодильной машины с различными хладагентами (R22, R507, R717).

Исходные данные для расчета и анализа холодильных циклов для шоковой заморозки с разными хладагентами выбраны общими за исключением промежуточного давления:

- ✓ средняя температура в камере охлаждения t_{ox}^{cp} =- 26 0 C (T_{ox}^{cp} =247 K);
- ✓ средняя температура окружающей среды t_{oc} = 27 0 C (T_{oc} = 300 K);
- ✓ средняя температура конденсации *XA* t_{κ} = 45 0 C (T_{κ} = 318 K);
- ✓ перегрев в испарителе, переохлаждение в конденсаторе, перегрев и охлаждение в трубопроводах, потери давления в теплообменниках и трубопроводах не учтены;

- ✓ адиабатный КПД компрессора, выражающий степень термодинамического совершенства процесса сжатия в адиабатных условиях $\eta_{ad} = 0.7$;
- ✓ расход хладагента в испарителе $G_1 = 1$ кг/с.
- ✓ перегрев в рекуперативном теплообменнике $\Delta t = 15^{\circ}C$

Параметры рабочих тел в узловых точках были определены с помощью программы REFPROP 8.0.

Пример расчёта приведён для двухступенчатого цикла с промежуточным сосудом на R22. Диаграмма цикла представлена на рис.1, а значения узловых точек в табл. 1.

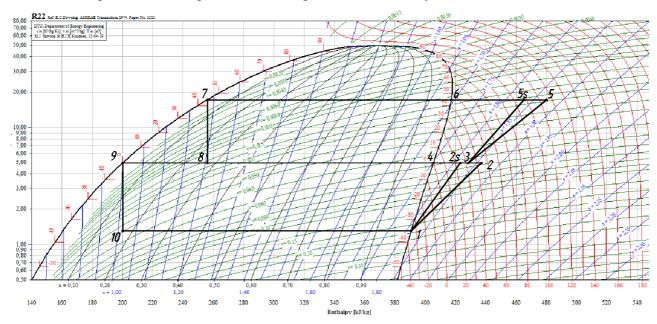


Рис. 1. Двухступенчатый цикл в lg(p)-h координатах

Таблица 1

	р, бар	t, C	h, кДж/кг	s, кДж/кг*К
1	1,32	-35,00	390,91	1,8139
2s	4,98	24,60	423,06	1,8139
2	4,98	43,73	436,84	1,8587
3	4,98	31,75	428,20	1,8309
4	4,98	0,00	405,37	1,75186
5s	17,29	97,36	464,59	1,83093
5	17,29	115,75	480,19	1,8720
6	17,29	45,00	417,32	1,6931
7	17,29	45,00	256,38	1,1873
8	4,98	0,00	256,38	1,2064
9	4,98	0,00	200,00	1,0000
10	1,32	-35,00	200,00	1,0123

Холодопроизводительность цикла:

$$Q_0 = G_1 \cdot (h_1 - h_{10}) = 1 \cdot (390.91 - 200) = 190.91 \kappa Bm$$
.

Минимально необходимая удельная работа (электроэнергия) для генерации холода:

$$l_{\min} = Q_0 \frac{T_{oc} - T_{ox}}{T_{ox}} = 190,91 \cdot \frac{300 - 247}{247} = 40,96 \kappa Bm.$$

Адиабатная работа сжатия 1-ой ступени:

$$l_{a\partial 1} = G_1 \cdot (h_{2a\partial} - h_1) = 1 \cdot (423,06 - 390,91) = 32,15 \kappa Bm.$$

Действительная затрачиваемая удельная работа сжатия 1-ой ступени с учетом $\eta_{\text{ag}}\!=0,\!7\!:$

$$l_{coc1} = \frac{l_{ao1}}{\eta_{ao}} = \frac{32,15}{0,7} = 45,93\kappa Bm$$
.

Адиабатная работа сжатия 2-ой ступени:

$$l_{a\partial 2} = G_2 \cdot (h_{5a\partial} - h_3) = 1,38 \cdot (464,59 - 428,20) = 50,22 \kappa Bm$$
.

Действительная затрачиваемая удельная работа сжатия 2-ой ступени с учетом $\eta_{aд}\!=0,\!7\!:$

$$l_{cxc2} = \frac{l_{ad2}}{\eta_{ad}} = \frac{50,22}{0,7} = 71,74\kappa Bm$$
.

Степень термодинамического совершенства цикла:

$$\eta_{mepm} = \frac{l_{\min}}{l_{cw1} + l_{cw2}} = \frac{40,96}{45,93 + 71,74} = 0,348.$$

Холодильный коэффициент при адиабатном процессе сжатия

$$\varepsilon_{\text{ад}} = \frac{q_0}{l_{a o 1} + l_{a o 2}} = \frac{190,91}{32,15 + 50,22} = 2,32 \frac{\kappa Bm(x o n o o a)}{\kappa Bm(p a o o m \omega)}$$
.

Действительная величина холодильного коэффициента:

$$\varepsilon_{\delta} = \frac{q_0}{l_{core}} = \eta_{a\delta} \cdot \varepsilon_{a\delta} = 0.7 \cdot 2.32 = 1.624 \frac{\kappa Bm(xoлoda)}{\kappa Bm(paбomы)}$$
.

Определение удельных величин минимально необходимой работы для компенсации производства энтропии в основных рабочих процессах холодильной установки:

• Минимально необходимая работа для компенсации производства энтропии при «сбиве» перегрева в конденсаторе:

$$\Delta l_{n\kappa} = G_2 \cdot T_{oc} \cdot \Delta s_{n\kappa} = G_2 \cdot T_{oc} \left[\frac{q_{n\kappa}}{T_{oc}} - (s_{5a\partial} - s_6) \right] = G_2 \cdot T_{oc} \left[\frac{h_{5a\partial} - h_6}{T_{oc}} - (s_{5a\partial} - s_6) \right] = G_2 \cdot ((h_{5a\partial} - h_6) - T_{oc} (s_{5a\partial} - s_6)) = 1,38 \cdot ((464,59 - 417,32) - 300 \cdot (1,8309 - 1,6931)) = 8,18 \kappa Bm.$$

 Необходимые минимальные удельные затраты работы сжатия для компенсации производства энтропии при конденсации паров хладагента в конденсаторе:

$$\Delta l_{\kappa\kappa} = G_2 \cdot T_{oc} \cdot \Delta s_{\kappa\kappa} = G_2 \cdot T_{oc} q_{\kappa\kappa} \left(\frac{1}{T_{oc}} - \frac{1}{T_{\kappa}} \right) = G_2 \cdot T_{oc} \cdot (h_6 - h_7) \cdot \left(\frac{1}{T_{oc}} - \frac{1}{T_{\kappa}} \right) = 1,38 \cdot 300 \cdot (417,32 - 256,38) \cdot \left(\frac{1}{300} - \frac{1}{318} \right) = 12,56 \kappa Bm.$$

 Необходимые минимальные удельные затраты работы сжатия для компенсации производства энтропии при дросселировании 1-ой ступени:

$$\Delta l_{\partial p1} = G_2 \cdot T_{oc} \cdot \Delta s_{\partial p} = G_2 \cdot T_{oc} \cdot (s_8 - s_7) = 1{,}38 \cdot 300 \cdot (1{,}2064 - 1{,}1873) = 7{,}91 \kappa Bm \,.$$

• Необходимые минимальные удельные затраты работы сжатия для компенсации производства энтропии при дросселировании 2-ой ступени:

$$\Delta l_{op2} = G_1 \cdot T_{oc} \cdot \Delta s_{op} = 300 \cdot (s_{10} - s_9) = 300 \cdot (1,0123 - 1) = 3,69 \kappa Bm.$$

 Необходимые минимальные удельные затраты работы сжатия для компенсации производства энтропии при смешении потоков:

$$\Delta l_{cM} = T_{oc} \cdot ((G_2 - G_1) \cdot (s_3 - s_4) + G_1 \cdot (s_3 - s_2)) =$$

$$= 300 \cdot (0.38 \cdot (1.8309 - 1.7519) + 1 \cdot (1.8309 - 1.8587)) = 0.67 \kappa Bm.$$

• Необходимая минимальная работа сжатия для компенсации производства энтропии в испарителе при передаче теплоты q_0 от криостатируемого объекта:

$$\Delta l_{u} = G_{1} \cdot T_{oc} \cdot \Delta s_{q_{0}} = G_{1} \cdot T_{oc} \cdot \left(\frac{q_{0}}{T_{0}} - \frac{q_{0}}{T_{ox}^{cp}}\right) = G_{1} \cdot \frac{T_{oc} \cdot \left(T_{ox}^{cp} - T_{0}\right)}{T_{0} \cdot T_{ox}^{cp}} \cdot q_{0} = \frac{300 \cdot (247 - 238) \cdot 190,91}{247 \cdot 238} = 8,78 \kappa Bm.$$

Суммируем величины минимальных работ для компенсации производства энтропии в холодильном цикле во всех элементах холодильной машины, которая в данном случае должна определить величину адиабатной работы сжатия:

$$l_{ao}^{p} = l_{\min} + \Delta l_{n\kappa} + \Delta l_{\kappa\kappa} + \Delta l_{\partial p1} + \Delta l_{\partial p2} + \Delta l_{c\kappa} + \Delta l_{u} =$$

$$= 40.96 + 8.18 + 12.56 + 7.91 + 3.69 + 0.67 + 8.78 = 82.75 \kappa Bm.$$

Энергетические потери в компрессоре в данном случае определяются по формуле:

$$\Delta l_{\kappa OMNP} = l_{cosc} - l_{ao} = l_{ao}^{p} \cdot (\frac{1}{\eta_{ao}} - 1) = 82,75 \cdot (\frac{1}{0,7} - 1) = 35,46 \kappa Bm.$$

Расчетная работа сжатия:

$$l^{p}_{cor} = l^{p}_{ad} + \Delta l_{rough} = 82,75 + 35,46 = 118,21 \kappa Bm$$
.

Далее приводятся результаты расчётов простого одноступенчатого (табл. 2 и табл. 3), одноступенчатого цикла с теплообменником (табл. 4 и табл. 5), цикла с экономайзером (табл. 6 и табл. 7) и двухступенчатого цикла с неполным промежуточным охлаждением (табл. 8 и табл. 9).

Хладагент	Q ₀ , кВт	l _{min} , кВт	l _{ад} , кВт	l _{сж} , кВт	ηтерм	$\epsilon_{a_{ m I}}$	$\epsilon_{\scriptscriptstyle m I}$
R22	134,20	28,80	67,27	96,10	0,30	2,00	1,40
R507	74,68	16,02	43,39	70,56	0,23	1,51	1,06
R717	1000,66	214,72	477,30	681,86	0,31	2,10	1,47

Tаблица 3 Удельные величины минимальной необходимой работы для компенсации «производства» энтропии для одноступенчатого цикла

Хладагент	L _{min} , %	$\Delta l_{\scriptscriptstyle \Pi K},\%$	$\Delta l_{ ext{kk}}$, %	$\Delta l_{дp1}$, %	Δl _и , %	$\Delta l_{ ext{компр}}, \ \%$	L _{ад} , %	L _{сж} , %
R22	29,96	4,85	9,47	19,32	6,41	30,00	70,00	100,00
R507	22,70	1,60	8,69	32,14	4,86	30,00	70,00	100,00
R717	31,49	12,73	8,93	10,11	6,74	30,00	70,00	100,00

Хладагент	Q ₀ , кВт	l _{min} , кВт	l _{ад} , кВт	l _{сж} , кВт	$\eta_{\text{терм}}$	$\epsilon_{a_{\mathcal{I}}}$	$\epsilon_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
R22	143,52	30,80	72,07	102,96	0,30	1,99	1,39
R507	87,02	18,67	53,87	76,96	0,24	1,62	1,13
R717	1034,26	221,93	509,10	727,29	0,32	2,03	1,42

Tаблица 5 Удельные величины минимальной необходимой работы для компенсации «производства» энтропии для одноступенчатого цикла с теплообменником

Хладагент	L _{min} , %	$\Delta l_{\text{IIK}},$ %	Δl_{KK} , %	$\Delta l_{дp}$, %	Δl _и , %	Δl _{τοα} , %	$\Delta l_{ ext{komp}}, \ \%$	l _{ад} , %	1 _{сж} , %
R22	29,89	7,13	8,83	15,25	6,39	2,50	30,00	70,0	100,0
R507	24,27	3,76	7,97	24,57	5,19	4,25	30,00	70,0	100,0
R717	30,51	15,3	8,37	8,06	6,53	1,25	30,00	70,0	100,0

Основные показатели цикла с экономайзером

Хладагент	Q ₀ , кВт	l _{min} , кВт	l _{ад} , кВт	l _{сж} , кВт	ηтерм	$\epsilon_{a_{ m J}}$	$\epsilon_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
R22	185,98	39,91	81,59	116,56	0,34	2,28	1,60
R507	137,70	29,55	67,44	96,34	0,31	2,04	1,43
R717	1198,65	257,20	551,19	787,41	0,33	2,17	1,52

Таблица 7 Удельные величины минимальной необходимой работы для компенсации «производства» энтропии для цикла с экономайзером

Хлада- гент	L _{min} ,	Δl _{πκ} , %	$\Delta l_{\scriptscriptstyle KK}, \ \%$	$\Delta l_{дp1}, \ \%$	Δl _{дp2} %	Δl _{cм} ,	Δl _и , %	Δl _{τoa} %	$\Delta l_{\text{компр}} \ \%$	1 _{ад} %	l _{сж} %
R22	34,21	6,76	10,52	1,81	4,73	0,33	7,32	4,33	30,0	70,0	100,0
R507	30,96	2,65	10,78	5,32	7,01	0,11	6,62	6,54	30,0	70,0	100,0
R717	32,51	16,31	8,90	0,45	2,32	0,62	6,71	2,20	30,0	70,0	100,0

 $\label{eq:2.2} {\it Таблица~8}$ Основные показатели двухступенчатого цикла с неполным промежуточным охлаждением

Хладагент	Q ₀ , кВт	l _{min} , кВт	l _{ад} , кВт	1сж, кВт	ηтерм	$\epsilon_{a_{ m J}}$	$\epsilon_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
R22	190,91	40,96	82,37	117,67	0,35	2,32	1,62
R507	148,25	31,81	67,94	97,06	0,33	2,18	1,53
R717	1214,99	260,71	550,11	785,88	0,33	2,21	1,55

Таблица 9 Удельные величины минимальной необходимой работы для компенсации «производства» энтропии для двухступенчатого цикла с неполным промежуточным охлаждением

Хладагент	L _{min} ,	Δl _{πκ} %	$\Delta l_{\scriptscriptstyle m KK}, \ \%$	Δl _{др1} %	Δl _{дp2} , %	Δl _{cм} , %	Δl _и , %	Δl _{компр} , %	l _{ад} , %	1 _{сж} , %
R22	34,65	6,92	10,63	6,69	3,12	0,57	7,43	30,00	70,0	100,00
R507	32,79	4,02	10,73	10,7	4,33	0,41	7,02	30,00	70,0	100,00
R717	32,99	16,6	9,29	2,99	1,78	0,73	7,06	30,00	70,0	100,00

По результатам расчётов можно сделать выводы об эффективности циклов и хладагентов:

1. Простой цикл является менеее эффективным из рассмотренных ввиду большой степени сжатия, высокой температуры негнетания и, как следствие, относительно небольшого холодильного коэффициента. Более эффективными с термодинамической точки зрения являются двухступенчатый цикл с неполным промежуточным

охлаждением и цикл с экономайзером. Но для их организации требуется большее количество аппаратов, что приводит к удорожанию установки. Показатели циклов для R22 представлены в табл. 10 и на рис. 2.

 Таблица 10

 Основные показатели холодильных циклов

	q ₀ , кВт	l _{min} , кВт	l _{ад} , кВт	1 _{сж} , кВт	$\eta_{\text{терм}}$	$\epsilon_{a_{\mathcal{I}}}$	$\mathcal{E}_{\mathtt{J}}$
Одноступенчатый цикл	134,20	28,80	67,27	96,10	0,30	2,00	1,40
Одноступенчатый цикл с т/о	143,52	30,80	72,07	102,96	0,30	1,99	1,39
Цикл с экономайзером	185,98	39,91	81,59	116,56	0,34	2,28	1,60
Двухступ. цикл	190,91	40,96	82,37	117,67	0,35	2,32	1,62

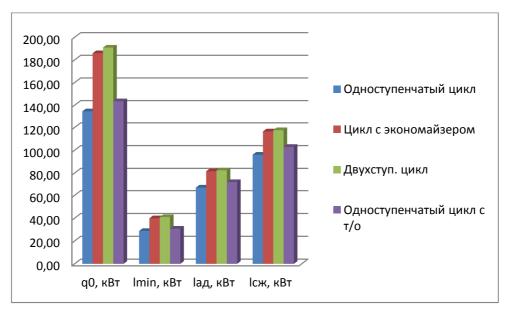


Рис. 2. Основных показатели холодильных циклов

- 2. Для хладагентов с высокой температурой нагнетания (аммиак) потери при «сбиве» перегрева в конденсаторе значительно выше, чем для хладагентов с низкой температурой нагнетания. Это обусловлено большей разностью энтропии в процессе охлаждения.
- 3. Термодинамические свойства хладагента оказывают влияние на показатели цикла. Например, хладагент R507 имеет более крутой наклон изоэнтроп. Вследствие чего получаем низкую температуру нагнетания (небольшие потери при «сбиве» перегрева в конденсаторе), но большие потери при дросселировании. Причём потери на дросселирование превышают выигрыш от низкой температуры нагнетания и хладагент R507 оказывается наименее эффективным из рассмотренных.

- 4. Потери на дросселирование в одноступенчатом цикле в несколько раз превышают потери в двухступенчатом. Это обусловлено меньшей степенью расширения в двухступенчатом цикле.
- 5. Хладагент R22 является наиболее эффективным хладагентом для циклов шоковой заморозки. Так как в простом цикле у него оптимальная температура нагнетания, а в двухступенчатых циклах наибольшая степень термодинамического совершенства.
- 6. Анализ затрат энергии («потерь») в холодильной установке показывает изменение их по узлам в зависимости от хладагента и вида цикла, что позволяет в конкретных обстоятельствах акцентировать внимание на необходимость совершенствования того или иного узла установки.

Графическая иллюстрация выводов представлена на рис. 3 и рис. 4, а значения в табл. 11 и табл. 12.

 Таблица 11

 Величины минимально необходимой работы для компенсации производства энтропии

 для различных циклов на R22

	L _{min} ,	$\Delta l_{\text{IIK}}, \%$	$\Delta l_{\text{kk}},$ %	Δl _{др1} , %	Δl _{др2} , %	Δl _{cм} , %	Δl _и , %	Δl _{τοα} , %	Δl_{km} , %	L _{ад} , %	L _{сж} , %
Одноступен- чатый цикл	30,0	4,9	9,5	19,3	0,0	0,0	6,4	0,0	30,0	70,0	100
Цикл с экономайзе- ром	34,2	6,8	10,5	1,8	4,7	0,3	7,3	4,3	30,0	70,0	100
Двухступен- чатый цикл	34,7	6,9	10,6	6,7	3,1	0,6	7,4	0,0	30,0	70,0	100
Одноступен- чатый цикл с т/о	29,9	7,1	8,8	15,3	0,0	0,0	6,4	2,5	30,0	70,0	100

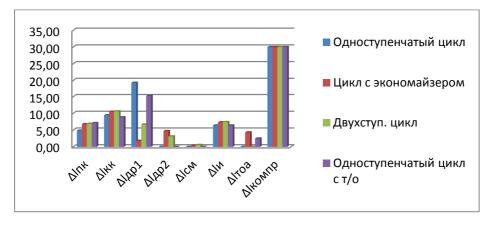


Рис. 3. Величины минимально необходимой работы для компенсации производства энтропии для различных циклов на R22

Величины минимальной необходимой работы для компенсации производства энтропии для различных хладагентов для двухступенчатого цикла

Хладагент	L _{min} ,	Δl _{πκ} , %	$\Delta l_{\text{kk}},$ %	$\Delta l_{дp1}, \ \%$	Δl _{дp2} , %	Δl _{cм} , %	Δl _и , %	$\Delta l_{\text{компр}}, \ \%$	L _{ад} , %	L _{сж} , %
R22	34,65	6,92	10,6	6,69	3,12	0,57	7,43	30,00	70,0	100,0
R507	32,79	4,02	10,7	10,70	4,33	0,41	7,02	30,00	70,0	100,0
R717	32,99	16,6	9,29	2,99	1,78	0,73	7,06	30,00	70,0	100,0

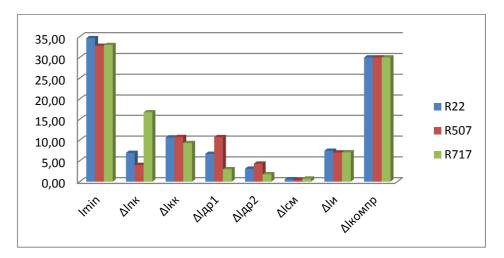


Рис. 4. Величины минимальной необходимой работы для компенсации производства энтропии для различных хладагентов для двухступенчатого цикла

Список литературы

- 1. Архаров А.М., Марфенина И.В., Микулин Е.И. Криогенные системы. М.: Машиностроение, 1996. 576 с.
- 2. Архаров А.М., Шишов В.В. Энтропийно статистический анализ классических холодильных циклов для систем кондиционирования // Холодильная техника. 2011. № 7. С. 84-97.
- 3. Шишов В.В., Ходакова Н.В., Михайлов А.Ю., Ракитин Д.И. Применение теплообменника в регенеративном холодильном цикле // Холодильная техника. 2002. № 8. С. 62-75.