Наука • Образование МГТУ им. Н.Э. Баумана

Сетевое научное издание ISSN 1994-0408 Наука и Образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2016. № 07. С. 168–175.

Представлена в редакцию: 19.07.2016 Исправлена: 07.08.2016

© МГТУ им. Н.Э. Баумана

УДК 378; 681.512.001.56

ВИРТУАЛЬНЫЕ ЛАБОРАТОРНЫЕ КОМПЛЕКСЫ ДЛЯ ИЗУЧЕНИЯ МАТЕРИАЛОВ И СТРУКТУР ЭЛЕКТРОНИКИ

Вишняков Н. В.¹, Мальченко С. И.¹, Холомина Т. А.¹, Маслов А. Д.^{1,*} *Maslov.a.d@mail.ru

¹ ФГБОУ ВО "Рязанский государственный радиотехнический университет", Рязань, Россия

В рамках международного научного конгресса "Наука и инженерное образование. SEE-2016", II международная научно-методическая конференция «Управление качеством инженерного образования. Возможности вузов и потребности промышленности» (23-25 июня 2016 г., МГТУ им. Н.Э. Баумана, Москва, Россия).

Приведены методические особенности виртуальных лабораторных работ, разработанных в среде инженерного графического программирования NI LabVIEW по ряду дисциплин, а также примеры их реализации для изучения процессов в материалах и приборах электроники и наноэлектроники.

Ключевые слова: физические процессы, лабораторная работа, виртуальная лаборатория

Введение

В современном высшем техническом образовании все больше внимания уделяется подготовке специалистов, владеющих не только теоретическими знаниями, но и новейшими методами исследования материалов и структур микро- и наноэлектроники. Традиционная схема проведения и ограниченность экспериментальной базы зачастую не позволяют в полной мере реализовать творческий и дидактический потенциал лабораторных практикумов [1,2]. Для повышения эффективности данного вида учебных занятий авторами предложено использование средств вычислительной техники - виртуального лабораторного и промышленного оборудования в сочетании с реальными инженерными расчетами студентов.

Преимуществами предлагаемого подхода являются

- возможность применения любого виртуального, в том числе уникального промышленного и исследовательского оборудования с любыми задаваемыми параметрами;
- сокращение времени проведения экспериментальных исследований и обработки результатов (которое в реальности может занимать десятки часов) до продолжительности реального типового учебного занятия;

- возможность исследования любых виртуальных экспериментальных образцов, в том числе уникальных, например, объектов наноэлектроники, гетероструктур с квантовыми ямами и др.;
- отсутствие необходимости соблюдения особых мер безопасности (высокие температура или радиационный фон, агрессивные среды и т.п.);
 - возможность простой реализации удаленного доступа и дистанционного обучения.

Постановка задачи и исходные данные

В данной работе была поставлена задача разработки лабораторных практикумов, в которых для обеспечения компетентностного подхода при изучении студентами современных методов и способов анализа характеристик и измерения параметров приборов и материалов микро- и наноэлектроники предусматривалось использование «виртуальных приборов и образцов».

В настоящее время предлагается широкий набор программного обеспечения для реализации математического моделирования и формирования виртуальных лабораторных работ. Одним из таких является пакет программ инженерного графического программирования LabVIEW фирмы National Instruments для использования как в учебных, так и научных целях [3,4], что позволило применить его при разработке виртуальных лабораторных работ.

Программное обеспечение комплекса виртуальных лабораторных работ разработано на основе сочетания известных теоретических моделей, справочных данных и экспериментальных результатов, полученных авторами или опубликованных в научнотехнической литературе [5-10].

При разработке основное внимание было обращено на отображение на экране персонального компьютера (ПК) внешнего вида промышленного оборудования и измерительных приборов. Переключение режимов и пределов измерения «виртуальных приборов» студенты должны производить самостоятельно с учетом заданных преподавателем заданий. При этом основные расчеты полученных параметров и построение различных характеристик материалов студенты выполняют самостоятельно с применением малой оргтехники или известных прикладных программ типа Excel.

Пример виртуальных лабораторных комплексов для изучения материалов и структур электроники

Для аппаратной реализации виртуальной лабораторной работы по исследованию сопротивления твердых диэлектриков в реальных условиях потребовался бы измеритель малых значений токов до 10⁻¹⁵ А. Такие приборы используются обычно в научных исследованиях в условиях исключительной экранировки, а применение в учебных целях вызывает большие (в том числе материальные) сложности. В виртуальной лабораторной работе студентам предлагается широкий выбор «материалов», измерение удельного сопротивления которых в реальности провести достаточно сложно. Выполнение лабораторной работы

начинается отображением на виртуальном учебном стенде краткой характеристики исследуемых материалов.

В этой лабораторной работе студенты исследуют температурную зависимость сопротивления диэлектриков с построением количественного графика log(R) от 1/Т (R- сопротивление образца. Т- температура), по которому рассчитывают энергию активации проводимости диэлектрика, исследуют зависимость поверхностного сопротивления от влажности воздуха. Провести такие исследования в реальных условиях за время, отведенное на лабораторную работу в рамках учебного процесса, практически невозможно.

В математическую модель дополнительно вводится случайный разброс параметров измеряемых величин, отображающий погрешность приборов при проведении измерений. Параметры и характеристики «виртуальных» материалов соответствуют данным, приведенным в справочной литературе.

Еще одним примером лабораторной работы по изучению свойств диэлектрических материалов является работа по измерению диэлектрической проницаемости и тангенса угла диэлектрических потерь различных материалов. В основу этой работы положен известный резонансный способ измерения диэлектрических параметров с помощью прибора измерителя добротности или Q-метра (рис. 1).

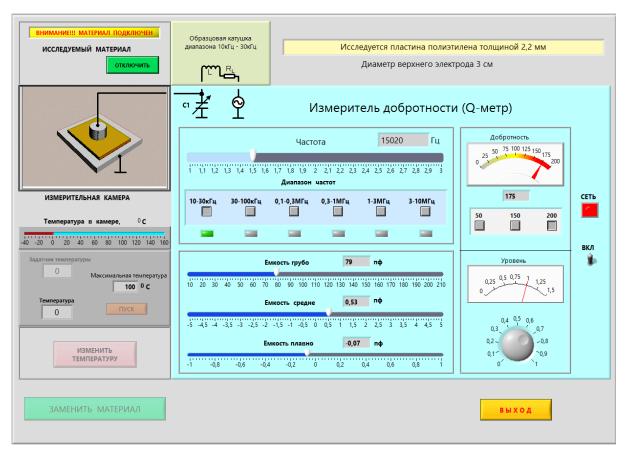


Рис.1. Виртуальный прибор Q-метр с измерительной камерой и образцом исследуемого материала

Студентам предлагается с помощью элементов управления прибором добиться резонанса на конкретной частоте и потом произвести расчет диэлектрической проницаемости и тангенса угла диэлектрических потерь исследуемого материала, зная его размеры и

площадь измерительного электрода. Затем, изменяя температуру в виртуальной измерительной камере, можно построить графики изменения параметров материала от температуры. В качестве виртуальных образцов предлагаются как полярные, так и неполярные диэлектрики.

Другим примером является работа по исследованию зависимости удельного сопротивления металлов и сплавов от температуры и состава компонентов. Провести такие исследования в реальных условиях сможет не каждая научная лаборатория. Необходимы экспериментальная камера с нагревательной и измерительной системами. Такие камеры должны работать в широком диапазоне температур от единиц до нескольких сотен кельвинов. Кроме того, необходимы образцы металлических сплавов с различными концентрациями компонентов. В этой лабораторной работе предполагается, что студенты изучают удельное сопротивление образца сплава в виде тонкой проволоки известного диаметра и длины при пропускании через нее тока заданной величины и измерении падения напряжения на образце с помощью образцового милливольтметра. При выборе материала сплавов на стенде приводится их краткая характеристика и области применения. Виртуальные приборы и измерительная камера для исследований показана на рис. 2.

Рис. 2. Внешний вид окна виртуальной лаборатории по исследованию температурной зависимости удельного сопротивления металлических сплавов

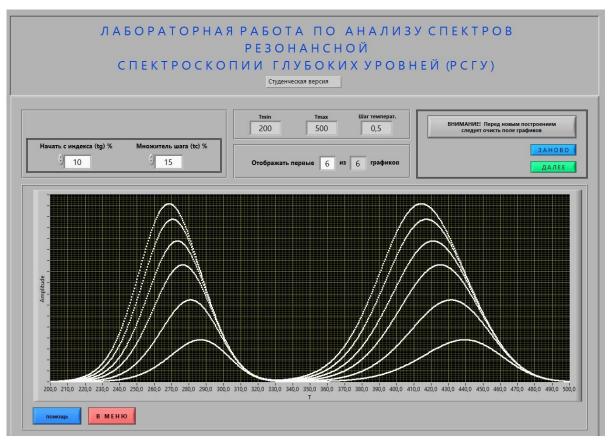
При заданной температуре студенты измеряют напряжение на образце и определяют сопротивление при известном значении тока. По известным геометрическим размерам (длина, диаметр) рассчитывают удельное сопротивление сплава. Затем строят графики зависимости удельного сопротивления сплава от температуры, а при постоянной температури.

ре строят графики зависимости удельного сопротивления сплава от процентного содержания компонентов.

Еще одним примером виртуальной лабораторной работы является термический анализ металлических сплавов. Для проведения термического анализа в реальной лаборатории необходимо иметь серию металлических сплавов с вариацией концентраций компонентов от 0 до 100 % [5]. Сплав конкретного состава необходимо довести до температуры плавления и затем в течение длительного времени подвергнуть медленному охлаждению (кристаллизации), соблюдая равновесный характер процесса. В процессе кристаллизации сплава необходимо контролировать его температуру и, построив график изменения температуры, отметить на нем характерные критические точки.

Затем такие же исследования необходимо провести со сплавом другого (третьего, четвертого и т.д.) состава и, получив несколько графиков изменения температуры в процессе кристаллизации расплава, построить диаграмму состояния — графическое изображение на плоскости фазового состава и критических точек сплава в зависимости от температуры и концентрации компонентов.

Постановка подобной лабораторной работы с реальными приборами и образцами в помещениях вуза не просто затруднительна в силу значительных технических и аппаратных проблем, но сопряжена с проблемами охраны труда и техники безопасности в лаборатории. Однако знание теоретических и прикладных разделов металловедения необходимо каждому техническому работнику с высшим образованием. Решение проблемы обеспечивает виртуальная лабораторная работа.


Авторами разработана такая лабораторная работа на основе пакета программ инженерного графического программирования LabVIEW [3,4]. Работа начинается с описания общих принципов термического анализа. Затем происходит выбор образца сплава по заданию преподавателя, выбирается содержание компонентов и начинается нагрев сплава в виртуальном тигле до температуры около 2000°С. Указанная температура обеспечивает расплавление всех имеющихся образцов сплавов. По окончании нагревания начинается охлаждение расплава и на графике, динамически появляющемся на графической панели виртуального лабораторного стенда, отображается кривая изменения его температуры. В программе предусмотрен случайный разброс параметров температуры, отражающий погрешность приборов.

В учебных целях для анализа предлагается восемь различных составов одного сплава. Студенты могут записать массив данных графика конкретного состава в файл и затем провести его анализ в программе, например, Excel. На основании этих восьми графиков обучающимся необходимо построить диаграмму состояния конкретного сплава.

Разработан также учебно-исследовательский комплекс по дисциплине «Методы исследования наноматериалов микро- и наносистем» для получения и анализа спектров релаксационной спектроскопии глубоких уровней (РСГУ) в барьерных структурах. Для проведения таких исследований приобретено дорогостоящее научное оборудование. В учебно-исследовательский комплекс входят аппаратно-приборная часть и программа обработки спектров, выполненная на основе среды инженерного графического программирования LabVIEW [3,6].

Формирование реальной лабораторной работы на основе такого оборудования является сложной задачей. Во-первых, процесс измерения может длиться несколько часов, вовторых, для проведения исследований необходимы специальные образцы, в-третьих, неверные манипуляции студентов с таким оборудованием (это нельзя исключать) приведут к выходу его из строя. Тем не менее, для обучения студентов современным методам исследования и анализа наноматериалов и микро- и наносистем было решено сформировать виртуальную лабораторную работу только из программной части этого учебно-исследовательского комплекса. Студентам предлагается провести анализ спектров РСГУ «виртуальных» образцов, модели которых заранее сформированы на основании реальных и учебных спектров с конкретными параметрами [7-9].

Внешний вид окна, отображаемого на экране ПК в этой виртуальной лабораторной работе, показан на рис. 3. Перед студентами поставлены задачи анализа и обработки спектров, отображаемых на экране. После предварительной обработки спектра средствами программы (путем фиксации положения максимумов спектра) студенты получают массивы данных. На основании этих данных они строят зависимость Аррениуса и затем, используя программу MathCAD, рассчитывают энергии ионизации глубоких уровней.

Рис. 3. Внешний вид в виртуальной лабораторной работе спектра, предлагаемый студентам для анализа при релаксационной спектроскопии глубоких уровней

Программный комплекс снабжен дополнительной программой, которая позволяет преподавателю сформировать виртуальные образцы структур с различными значениями энергии активации энергетических уровней, что дает возможность разнообразить процесс исследования для разных групп студентов.

Еще одним примером использования виртуальных лабораторных работ при изучении тонких явлений в барьерных полупроводниковых структурах является исследование параметров квантовых ям [10]. Квантовая яма (англ. quantum well) — тонкий плоский слой полупроводникового материала (обычно толщиной 1–10 нм), внутри которого потенциальная энергия электрона ниже, чем за его пределами, таким образом, движение электрона ограничено в одном измерении. Движение в направлении, перпендикулярном плоскости квантовой ямы, квантуется, и его энергия может принимать лишь некоторые дискретные значения. Параметры квантовых ям определяются по вольт-фарадным характеристикам структур, точнее по отличиям таких характеристик от типичных зависимостей, которые обусловлены наличием объемного заряда в приповерхностной области полупроводника.

В лабораторной работе студенты выбирают образец и измеряют его вольт-фарадную характеристику на виртуальном стенде, и затем, используя программу MathCAD, рассчитывают параметры квантовой ямы.

С помощью специально разработанной программы, входящей в состав комплекса, преподаватель создает виртуальные образцы барьерных структур с конкретными параметрами квантовых ям, которые используются в лабораторной работе.

Обсуждение результатов

В результате проведенной работы созданы лабораторные комплексы на базе виртуальных приборов в среде инженерного графического программирования NI LabVIEW. Применение описанных выше лабораторных комплексов в образовательном процессе, проводимом на кафедре микро- и наноэлектроники (МНЭЛ) Рязанского государственного радиотехнического университета (РГРТУ) по дисциплинам «Материалы электронной техники», «Физика наносистем», «Методы исследования наноматериалов микро- и наносистем» и др., показало их высокую эффективность. Студенты более отчетливо понимают особенности применения современного измерительного и исследовательского оборудования при измерении характеристик материалов и приборов микро- и наноэлектроники. На лабораторных работах студенты получают обобщенные знания об используемом оборудовании, измерительных приборах и методах проведения измерений. Результаты аттестации студентов показали улучшение успеваемости по изучаемым на кафедре дисциплинам в среднем на 20 – 25%.

Заключение

В настоящей работе предложена концепция системы лабораторных практикумов на основе аппаратуры фирмы National Instruments и среды инженерного графического программирования NI LabVIEW для студентов, обучающихся по направлению подготовки «Электроника и наноэлектроника».

Разработка и применение в учебном процессе кафедры МНЭЛ РГРТУ виртуальных лабораторных работ на основе пакета программ LabVIEW и аппаратуры фирмы National Instruments позволило организовать обучение студентов современным методам исследования параметров и характеристик материалов электронной техники, микро- и наноэлектроники.

Список литературы

- [1]. Тревис Дж. LabVIEW для всех. / Пер. с англ. Клушин Н.А. М.: ДМК Пресс; ПриборКомплект. 2005. 544 с.
- [2]. Хуторской А.В. Педагогическая инноватика: учеб. пособие М.: Издательский центр «Академия». 2008. 256 с.
- [3]. Бордовская Н.В. и др. Современные образовательные технологии: учеб. пособие. 2-е изд., стер. / коллектив авторов; под ред. Н.В. Бордовской. М.: КноРус. 2011. 432 с.
- [4]. Ермачихин А.В., Литвинов В.Г., Мальченко С.И., Холомина Т.А., Холомин А.Ю. Цикл лабораторных работ по теоретическому изучению свойств металлов и сплавов на основе виртуальных лабораторий. / «Инженерные и научные приложения на базе технологий NI NIDays 2015»: Сборник трудов XIV международной научнопрактической конференции. (Москва, конгресс-центр МТУСИ, 27 ноября 2015 г.). 2015. М.: ДМК-пресс. С. 209-211.
- [5]. Ho C.Y., Askerman M.W., Wu K.Y., Havill1 T.N., Bogaard R.H., Matula R.A., Oh S.G., James H.M. Electrical resistivity of ten selected binary alloy systems // Journal of Physical and Chemical Reference Data. 1983. Vol. 12. Is. 2. P. 183-318. DOI: http://dx.doi.org/10.1063/1.555684
- [6]. Litvinov V.G., Kozlovsky V.I., Sannikov D.A., Sviridov D.E., Milovanova O.A., Rybin N.B. Local measurement of band offset for ZnCdS/ZnSSe nanostructure by Laplace current DLTS cooperated with AFM technique // 14th International Conference on II VI Compounds «Program and abstracts». (St. Peterburg, Russia, August 23-28, 2009). St.Petersburg: Ioffe Physical Technical Institute. 2009. Mo5p-14. P.153.
- [7]. Kozlovsky V.I., Sannikov D.A., Litvinov V.G. Cathodoluminescence and Current DLTS of MOVPE-Grown ZnCdS/ZnSSe SQW Structures. // Journal of The Korean Physical Society. 2008. Vol. 53. Is. 925. P. 2864-2866. DOI: 10.3938/jkps.53.2864
- [8]. Vishnyakov N.V., Vikhrov S.P., Mishustin V.G., Almazov D.V., Litvinov V.G., Gudzev V.V. The Measurement of Electric Field Distribution in the Barrier Structures Based on Disordered Semiconductors // Journal of Nanoelectronics and Optoelectronics. 2015. Vol. 9. Is. 6. P. 773-777. DOI: http://dx.doi.org/10.1166/jno.2014.1674
- [9]. Litvinov V. G., Ermachikhin A. V., Rybin N. B., Vishnyakov N. V., Vikhrov S. P. Complex Method of Diagnostics of Diode-Like Quantum Well Heterostructures with Use of Low Frequency Noise Spectroscopy // Journal of Nanoelectronics and Optoelectronics. 2015. Vol. 9. Is. 6. P. 756-761. DOI: http://dx.doi.org/10.1166/jno.2014.1675
- [10]. Ankudinov A.V., Mintairov A.M., Slipchenko S.O., Shelaev A.V., Yanul M.L., Dorozhkin P.S., Vishnyakov N.V. Scanning Near-Field Optical Microscopy of light emitting semi-conductor nanostructures // Ferroelectrics. Taylor & Francis Group, LLC. 2015. Vol. 477. Is. 1. P. 65-76. DOI: 10.1080/00150193.2015.999632