ИНЖЕНЕРНЫЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51036. ISSN 2307-0595

Вывод дифференциальных уравнений, их линеаризация и определение передаточной функции системы автоматического регулирования угловой скорости паровой турбины

10, октябрь 2016 Наумов А. М.^{1,*}

УДК: 681.5

¹Россия, МГТУ им. Н.Э. Баумана *nam63@mail.ru

Введение

Методы теории автоматического регулирования широко используются при анализе и конструировании не только сложных систем автоматического регулирования (CAP), но и динамических систем вообще (в особенности при анализе устойчивости и оптимизации систем).

Экспериментальные исследования реальных механических систем в учебном процессе связаны с большими материальными затратами и техническими трудностями. Целесообразным является изучение отдельных важных аспектов поведения систем управления и автоматического регулирования на моделях таких систем, в том числе и с использованием компьютерного моделирования. При изучении дисциплины «Управление техническими системами» особое внимание должно быть уделено умению грамотного вывода дифференциальных уравнений, описывающих поведение всех составляющих частей, узлов и элементарных звеньев, входящих в состав САР. Необходимо заметить, что в научнометодической литературе, как в признанной уже «классической» [6-8], как в книгах современных авторов, посвящённых проблемам автоматического регулирования [1], [5], так и в изданиях, посвящённых практическому освоению данной дисциплины [2-4], на взгляд автора, недостаточное внимание уделяется проблеме аккуратного, с учётом всех особенностей системы, вывода дифференциальных уравнений и их линеаризации.

Предлагаемая работа может быть использована как в теоретической части курса, так и в практических занятиях по курсу "Управление механическими системами". Особенно актуальной она может оказаться для студентов-механиков, поскольку в ней рассматривается реальный механический объект, основные принципы поведения которого хорошо ими изучены в курсах «Теория машин и механизмов» и «Теория механических колебаний».

Цель работы – вывод нелинейных дифференциальных уравнений механической колебательной системы, линеаризация полученных уравнений в области некоторого номинального стационарного режима работы турбины и получение передаточной функции САР угловой скорости турбины и характеристического уравнения.

Функциональная схема (блок-схема) САР угловой скорости паровой турбины (рис. 1) показана на рис. 2.

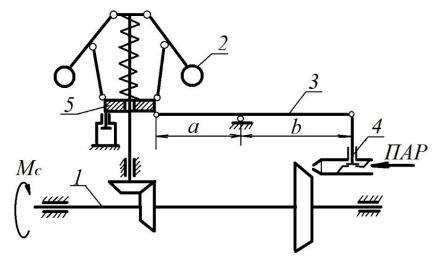


Рис.1. Функциональная схема САР угловой скорости паровой турбины

Рис.2. Функциональная блок-схема САР угловой скорости паровой турбины

При отклонении угловой скорости ω турбины 1 (рис. 1) от заданного значения меняется центробежная сила грузов 2, в связи с чем изменяется положение муфты 5, которая рычагом 3 приводит в действие исполнительный механизм задвижку 4. Таким образом, в данной системе работа исполнительного механизма осуществляется за счет энергии чувствительного элемента (центробежного регулятора) и, следовательно, с точки зрения классификации систем автоматического регулирования данная САР является системой прямого действия. Рассмотрим уравнения движения системы по составляющим звеньям.

Регулируемый объект (паровая турбина). Активный момент на валу турбины может быть представлен формулой

$$M_{\mathcal{A}} = \frac{1}{2} \chi y \frac{\mathbf{v}^3}{\omega},\tag{1}$$

где χ - коэффициент, зависящий от конструкции паровой турбины; y — величина открытия задвижки направляющего аппарата; v — скорость движения пара; v — угловая скорость паровой турбины.

Линеаризуем зависимость (1) с помощью разложения в ряд Тейлора в окрестности стационарного режима движения(y_0, v_0, \mathcal{O}_0) по степеням малых приращений $\Delta y, \Delta \omega$, отбрасывая члены разложения второго и более высоких порядков малости (при этом считаем скорость у движения пара постоянной):

$$\boldsymbol{M}_{\mathcal{A}} = \boldsymbol{M}_{\mathcal{A}0} + \frac{1}{2} \chi \frac{v_0^3}{\omega_0} \Delta y - \frac{1}{2} \chi \frac{v_0^3 y_0}{\omega_0^2} \Delta \omega, \tag{2}$$

где $M_{\mathcal{A}0} = \frac{1}{2} \chi \frac{v_0^3}{\omega_0} y_0$ - установившийся активный момент. Уравнение (2) приведем к виду

$$\boldsymbol{M}_{\mathcal{A}} = \boldsymbol{M}_{\mathcal{A}0} (1 + \frac{\Delta y}{y_0} - \frac{\Delta \omega}{\omega_0}). \tag{3}$$

Момент сопротивления на валу турбины

$$M_C = M_{C0} + \Delta M_C, \tag{4}$$

где M_{C0} - установившийся момент сопротивления турбины; $\Delta\!M_{C}$ - момент от изменения нагрузки.

Из теоремы об изменении момента количества движения системы получим уравнение паровой турбины

$$J\frac{d\omega}{dt} = M_{\mathcal{A}} - M_{\mathcal{C}}.$$
 (5)

Здесь J - приведенный к валу турбины момент инерции всех вращающихся масс. Подставим в уравнение (5) зависимости (3) и (4), получим

$$J\frac{d\omega}{dt} = M_{I0}(1 + \frac{\Delta y}{y_0} - \frac{\Delta \omega}{\omega_0}) - M_{C0} - \Delta M_C.$$

В установившемся режиме $M_{{\cal A}^0}=M_{{\cal C}^0}.$ Тогда уравнение турбины в приращениях будет иметь вид

$$J\frac{d\omega}{dt} = M_{\mathcal{A}0}(\frac{\Delta y}{y_0} - \frac{\Delta\omega}{\omega_0}) - \Delta M_{C0}.$$
 (6)

Номинальными значениями для турбины будем считать $y_0, \omega_0, M_{\mathcal{A}0} = M_{C0} = M_0$. С учётом этого уравнение (6) соответствует

$$J\frac{\omega_0}{M_0}\frac{d\left(\frac{\Delta\omega}{\omega_0}\right)}{dt} = -\frac{\Delta M_C}{M_0} - \frac{\Delta\omega}{\omega_0} + \frac{\Delta y}{y_0}.$$
 (7)

Введем в уравнение (7) следующие обозначения:

$$J\frac{\omega_0}{M_0} = T_1$$
, $\frac{\Delta M_C}{M_0} = f_0$, $\frac{\Delta \omega}{\omega_0} = \gamma$, $\frac{\Delta y}{y_0} = \mu$.

Получим

$$T_1 \frac{d\gamma}{dt} + \gamma = \mu - f_0. \tag{8}$$

Уравнение (8) характеризует турбину как систему первого порядка, передаточная функция которой $W_1(s) = \frac{1}{T_1 s + 1}$, где T_1 - постоянная времени турбины, s - оператор

Лапласа (понятие о передаточных функциях и их получение для отдельных звеньев рассмотрено в [9,10]).

Чувствительный элемент. Чувствительный элемент системы — центробежный маятник (рис. 3).

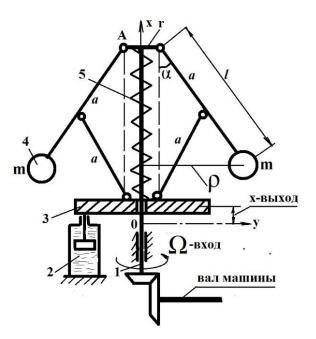


Рис. 3. Центробежный маятник

Вал центробежного маятника вращается с угловой скоростью Ω , пропорциональной угловой скорости машины. С такой же скоростью вращаются относительно оси $\mathcal X$ шары 4, обладающие массой m и занимающие определенное положение относительно оси $\mathcal X$ при постоянной скорости. При увеличении или уменьшении скорости шары расходятся или сближаются, вызывая перемещение муфты 3, кинематически связанной с шарами системой тяг.

Введем обозначения:

c - коэффициент жесткости пружины 5 (рис. 1);

 ν - коэффициент вязкого трения;

M - масса частей, участвующих в поступательном движении вдоль оси 0x;

 ${\cal F}_{\scriptscriptstyle 0}$ - сила предварительного поджатия пружины.

Для составления дифференциального уравнения центробежного маятника используем уравнение Лагранжа II рода

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) - \frac{\partial T}{\partial q} = Q, \tag{9}$$

где q - обобщенная координата; T - кинетическая энергия системы; Q - обобщенная сила; в общем случае системы с одной степенью свободы $Q = -\frac{\partial \Pi}{\partial a} + \frac{\partial R}{\partial \dot{a}} + F(t)$.

Здесь Π - потенциальная энергия динамической системы; RR -функция рассеяния энергии; F(t) — внешняя сила, приложенная к динамической системе. В качестве обобщенной координаты q выберем выходную координату - перемещение муфты \mathcal{X} . Считаем F(t)=0. Как следует из рис. 1

$$\rho = r + l \sin \alpha$$
, $x = 2a(1 - \cos \alpha)$, $\sin \alpha = \frac{\sqrt{x(4a - x)}}{2a}$

Кинетическая энергия системы $T=T_{\rho}+T_l+T_x$ где T_{ρ} - кинетическая энергия шаров во вращательном движении вокруг оси 0x; T_l - кинетическая энергия шаров во вращательном движении относительно точек A; T_x - кинетическая энергия масс в поступательном движении вдоль оси 0x. Указанные составляющие кинетической энергии маятника:

$$T_{\rho} = \frac{2m\Omega^{2}\rho^{2}}{2} = m\Omega^{2}(r + l\sin\alpha)^{2} = m\Omega^{2}\left(r + \frac{l}{2a}\sqrt{x(4a - x)}\right)^{2},$$

$$T_{l} = \frac{2ml^{2}\dot{\alpha}^{2}}{2} = \frac{ml^{2}\dot{x}^{2}}{x(4a - x)}, \quad T_{x} = \frac{M\dot{x}^{2}}{2}$$

Потенциальная энергия маятника $\Pi=\Pi_1+\Pi_2+\Pi_3$, где Π_1 - потенциальная энергия масс, движущихся параллельно оси 0x; Π_2 - потенциальная энергия шаров; Π_3 - потенциальная энергия пружины. Для рассматриваемого случая имеем

$$\Pi_1 = mgx, \quad \Pi_2 = 2mgl(1 - \cos \alpha) = \frac{mglx}{a}, \quad \Pi_3 = F_0x + \frac{cx^2}{2}$$

Функция рассеяния энергии R определяется в данной расчетной схеме вязким трением в демпфере 2 (рис. 1) при перетекании масла через калиброванные отверстия из одной полости цилиндра в другую в случае движения муфты 3 и связанного с ней поршня демп-

φepa:
$$R = -\frac{1}{2}v\dot{x}^2$$
.

Подставив выражения для кинетической энергии T и обобщенной силы Q в уравнение Лагранжа (9), получим

$$f_1(x)\ddot{x} - f_2(x)\dot{x}^2 + v\dot{x} - f_3(x,\Omega) = -F_0 - Mg - \frac{mgl}{a},\tag{10}$$

где

$$f_1(x) = M + \frac{2ml^2}{x(4a-x)}, f_2(x) = \frac{2ml^2(2a-x)}{x^2(4a-x)^2},$$
$$f_3(x,\Omega) = \frac{ml(2a-x)}{a\sqrt{x(4a-x)}} \left(r + \frac{1}{2a}\sqrt{x(4a-x)}\right)\Omega^2.$$

Уравнение (10) — нелинейное дифференциальное уравнение. Стационарный режим ($\Omega = \Omega_0 = const, x = x_0 = const$) характеризуется соотношением

$$cx_0 - f_3(x_0, \Omega_0) = -F_0 - Mg - \frac{mgl}{a}$$
 (11)

Рассмотрим малые колебания центробежного маятника относительно стационарного состояния (x_0,Ω_0) . Пусть $x=x_0+\Delta x$, $\Omega=\Omega_0+\Delta\Omega$. Разложим функции $f_1(x),\ f_2(x),\ f_3(x,\Omega)$ в ряд Тейлора в окрестности стационарного состояния (x_0,Ω_0) :

$$\begin{split} f_1(x) &= f_1(x_0) + \left(\frac{df_1}{dx}\right)_0 \Delta x + \Phi_1(\Delta x), \\ f_2(x) &= f_2(x_0) + \left(\frac{df_2}{dx}\right)_0 \Delta x + \Phi_2(\Delta x), \\ f_3(x,\Omega) &= f_1(x_0,\Omega_0) + \left(\frac{df_3}{dx}\right)_0 \Delta x + \left(\frac{df_3}{d\Omega}\right)_0 \Delta \Omega + \Phi_3(\Delta x,\Delta \Omega), \end{split} \tag{12}$$

где функции $\Phi_1(\Delta x)$, $\Phi_2(\Delta x)$, $\Phi_3(\Delta x,\Delta\Omega)$ имеют более высокий порядок малости по сравнению с $\Delta x,\Delta\Omega$. Учитывая, что $\dot{x}=\frac{d(\Delta x)}{dt}, \ddot{x}=\frac{d^2(\Delta x)}{dt^2}$, принимая во внимание выражения (11) и (12), пренебрегая малыми отклонениями второго и более высокого порядка, получим линеаризованное уравнение колебаний маятника относительно стационарного состояния (x_0,Ω_0)

$$f_1(x_0)\frac{d^2(\Delta x)}{dt^2} + v\frac{d(\Delta x)}{dt} + \left(c - \frac{df_3}{dx_0}\right)\Delta x = \left(\frac{df_3}{d\Omega}\right)_0 \Delta\Omega \tag{13}$$

где

$$\begin{split} f_1(x_0) &= M + \frac{2ml^2}{x_0(4a - x_0)}, \ \left(\frac{df_3}{dx}\right)_0 = -\frac{ml\Omega_0^2}{a} \left(4a^2r \left(x_0(4a - x_0)^{-\frac{3}{2}} + \frac{l}{2a}\right)\right), \\ \left(\frac{df_3}{d\Omega}\right)_0 &= \frac{2ml(2a - x_0)\Omega_0}{a\sqrt{x_0(4a - x_0)}} \left(r + \frac{l}{2a}\sqrt{x_0(4a - x_0)}\right). \end{split}$$

Уравнение (13) можно представить в безразмерных переменных, если ввести обозначения $\frac{\Delta x}{x_0} = \eta, \ \frac{\Delta \Omega}{\omega_0} = \zeta$ ·

После несложных преобразований получим уравнение чувствительного элемента в нормализованной форме

$$\frac{T_{M\Phi}^2}{\delta_{PE\Gamma}} \frac{d^2 \eta}{dt^2} + \frac{T_K}{\delta_{PE\Gamma}} \frac{d\eta}{dt} + \eta = \frac{1}{\delta_{PE\Gamma}} \zeta, \tag{14}$$

где

$$T_{M\Phi} = \left\{ f_1(x_0) x_0 \left[\left(\frac{df_3}{d\Omega} \right)_0 \omega_0 \right]^{-1} \right\}^{\frac{1}{2}}$$
 - постоянная времени муфты маятника;

$$T_{\scriptscriptstyle K} = v x_0 igg[\left(rac{d f_3}{d \Omega}
ight)_0 arphi_0 igg]^{-1}$$
 - постоянная времени демпфера;

$$\delta_{PE\Gamma} = \left\lceil c - \left(\frac{df_3}{dx} \right)_0 \right\rceil x_0 \left\lceil \left(\frac{df_3}{d\Omega} \right)_0 \omega_0 \right\rceil^{-1}$$
 - коэффициент статизма.

Уравнение (14) характеризует центробежный маятник как звено второго порядка - колебательное звено САР. Передаточная функция такого звена имеет вид:

$$W_2(s) = \frac{\frac{1}{\delta_{PE\Gamma}}}{\frac{T_{M\Phi}^2}{\delta_{PE\Gamma}} s^2 + \frac{T_K}{\delta_{PE\Gamma}} s + 1}.$$
 (15)

Следует иметь в виду, что в САР, которую предполагается использовать для проверки полученных теоретических результатов, могут быть приняты иные коэффициенты в выражении для передаточной функции колебательного звена (15). В частности, в системе моделирования «МВТУ» («Моделирование в технических устройствах») приняты следующие обозначения для колебательного звена:

$$W_2(s) = \frac{K}{T^2 s^2 + 2Tbs + 1} \tag{16}$$

где $K = \frac{1}{\delta_{\scriptscriptstyle PE\Gamma}}$ передаточный коэффициент (коэффициент усиления); $T = \frac{T_{\scriptscriptstyle M\Phi}}{\sqrt{\delta_{\scriptscriptstyle PE\Gamma}}}$ -

постоянная времени звена второго порядка; $b=\frac{T_{K}}{2T_{M\phi}\sqrt{\delta_{\it PET}}}$ коэффициент относительного демпфирования.

Исполнительный механизм. Запишем уравнение движения задвижки как безынерционного звена $\mu=K_0\lambda$, где K_0 - передаточный коэффициент, $\lambda=\frac{\Delta\lambda}{\lambda_0}$ - безразмерное

перемещение точки A (рис. 1) вверх, λ_0 - перемещение точки A , соответствующее стационарному режиму, $\Delta\lambda$ — малое отклонение той же точки относительно λ_0 .

Другие элементы в цепи обратной связи. Угловые скорости вала центробежного регулятора и вала турбины связаны между собой соотношением $\Omega = i\omega$ или $\zeta = i\gamma$, где i — передаточное число связи вала турбины с валом регулятора (связь осуществляется с помощью конической зубчатой передачи).

В рассматриваемой системе автоматического регулирования использована жесткая отрицательная обратная связь. При увеличении угловой скорости муфта 5 (рис. 1) поднимается и с помощью рычага 3 опускает точку A, вследствие чего уменьшается степень открытия задвижки направляющего аппарата. Рассматривая рычаг 3 как звено нулевого порядка, представим его уравнение в следующем виде: $\lambda = -K_P \eta$.

Передаточная функция системы. Определим передаточную функцию W(s) данной системы. Для этого, имея в виду уже определенные передаточные функции отдельных звеньев, на основании функциональной схемы системы регулирования в целом (рис. 2) представим структурную схему (рис. 4).

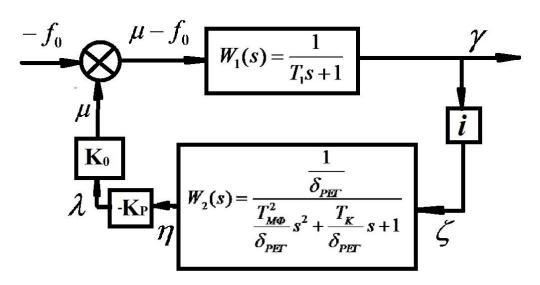


Рис. 4. Структурная схема системы регулирования

Для упрощения полученной структурной схемы заменим последовательно соединенные звенья в цепи обратной связи одним звеном с передаточной функцией $W_3(s)=i\cdot W_2(s)\cdot K_P\cdot K_0$. Таким образом, структурная схема системы регулирования угловой скорости паровой турбины имеет вид контура с неединичной отрицательной обратной связью (рис. 5), для которого легко определить передаточную функцию

$$W(s) = \frac{W_1(s)}{1 + W_1(s)W_3(s)}.$$

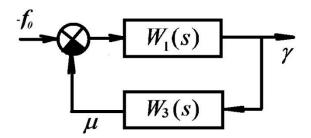


Рис.5. Структурная схема системы регулирования угловой скорости паровой турбины

Отсюда следует характеристическое уравнение, соответствующее исследуемой САР:

$$1+W_1(s)W_3(s)=0$$
,

или

$$(T_1 T_{M\Phi}^2) s^3 + (T_{M\Phi}^2 + T_1 T_K) s^2 + (T_K + T_1 \delta_{PE\Gamma}) s + (\delta_{PE\Gamma} + i K_P K_0) = 0.$$

Заключение

Таким образом, видно, что CAP скорости паровой турбины с чувствительным элементом (он же регулятор) прямого действия описывается дифференциальным уравнением третьего порядка, которому соответствует характеристическое уравнение в виде полинома того же порядка. Одним из важнейших вопросов, возникающих при анализе CAP (помимо вопроса функциональности) является вопрос устойчивости системы. В дальнейшем автор рассчитывает показать, как решается этот вопрос для выше рассмотренной CAP в программном комплексе «МВТУ».

Список литературы

- [1]. Деменков Н.П., Васильев Г.Н. Управление техническими системами: учебник для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана. 2013. 399 с.
- [2]. Борисевич А.В., Полищук М.Н. Теория автоматического управления. Практикум по моделированию динамических процессов и синтезу регуляторов в следящем приводе. Учебное пособие. СПб.: Изд-во Политехнического университета. 2013. 126 с.
- [3]. Суханов В.А. Автоматическое и автоматизированное управление на основе программно-технического комплекса КОНТАР: метод. указания к выполнению лаб.-практ. работ по дисциплинам "Управляющие ЭВМ и комплексы", "Управление техническими системами". М.: Изд-во МГТУ им. Н.Э. Баумана. 2012. 64 с.
- [4]. Ощепков А.Ю. Системы автоматического управления. Теория, применение, моделирование в МАТLAB: учеб. пособие. 2-е изд, испр. и доп. СПб.: Лань. 2013. 208 с.
- [5]. Никульчев Е.В., Мотиенко Т.А. Задачи анализа и синтеза систем автоматического управления в МАТLAB: Учебное пособие. М.: Изд-во МТИ. 2014. 84 с.
- [6]. Воронов А. А. Основы теории автоматического управления. Автоматическое регулирование непрерывных линейных систем. 2-е изд., перераб. М.: Энергия. 1980. 312 с.

- [7]. Солодовников В.В., Плотников В.Н., Яковлев А.В. Теория автоматического управления техническими системами: Учеб. пособие. М.: Изд-во МГТУ им. Н.Э. Баумана. 1993. 492 с.
- [8]. Бесекерский В.А., Попов Е.П. Теория систем автоматического управления. Изд. 4-е, перераб. и доп. М.: Профессия. 2003. 752 с.
- [9]. Наумов А.М. Некоторые аспекты изложения курса «Управление техническими системами» для студентов специальности «Прикладная механика» // Инженерный вестник. Электронный научно-технический журнал МГТУ им. Н.Э. Баумана. 2015. №5. С.1051-1058. Режим доступа: http://engsi.ru/doc/775803.html (дата обращения: 6.10.2016)
- [10]. Наумов А.М. Определение параметров механической колебательной системы по характеристике переходного процесса и годографу АФЧХ // Инженерный вестник. Электронный научно-технический журнал МГТУ им. Н.Э. Баумана. 2016. №1. С.1313-1319. Режим доступа: http://engsi.ru/doc/832583.html (дата обращения: 6.10.2016)