МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель Общероссийская общественная организация "Академия инженерных наук им. А.М. Прохорова" ISSN 2307-0609

02, июнь 2018

УДК 629.7

Оценка корректности расчетов методом SPH при высокоскоростном ударе частицей космического мусора сэндвич панелей на основе вспененного алюминия

Потёмкин П.П., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Ракетно-космические композитные конструкции» potiomkin_2007@mail.ru

Научный руководитель: Михайловский К.В., доцент, к.т.н. Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Ракетно-космические композитные конструкции» kosmiv@yandex.ru

Аннотация: Необходимость обеспечения космических аппаратов и космических станций от воздействия космического мусора и микрометеороидов требует разработки сверхлегких защитных экранов. В работе рассматривается возможность применения сэндвич панелей на основе вспененного алюминия в качестве микрометеороидной защиты. В работе приведены результаты математического моделирования высокоскоростного удара частицами космического мусора разной скорости и массы с сэндвич панелью с использованием программного комплекса ANSYS AUTODYN и метода сглаженных частиц SPH. Полученные при математическом моделирование результаты верифицировались с опубликованными экспериментальными данными.

<u>Ключевые слова:</u> сэндвич панели (sandwich panel), вспененный алюминий (aluminium foam), высокоскоростной удар (high speed impact), математическое моделирование (mathematical modeling), метод SPH (SPH method).

Введение

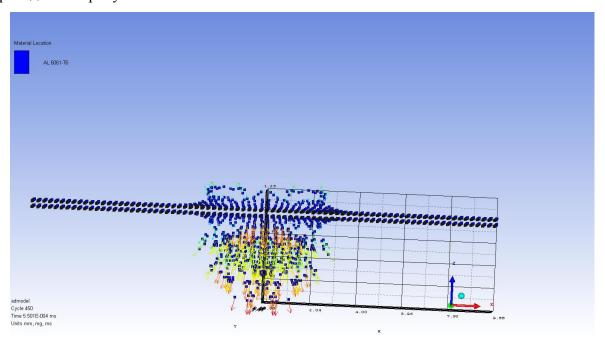
При запуске первых космических аппаратов (КА) предполагалось, что непосредственное механическое взаимодействие во время полёта в открытом космосе будет происходить только с космической пылью и микрометеороидами. Но в настоящее время одной из важных проблем становится защита КА от столкновения с космическим мусором (КМ), остающимся после запуска КА, появляющимся в результате столкновений КА друг с другом или КМ, или производимым в результате эксплуатации КА на орбите,

наподобие частиц шлака и пыли, появляющихся в результате работы двигателей, и прочего КМ. В связи с вышеизложенным требуется предусмотреть защиту КА и в частности защиту, как дорогостоящего оборудования, так и экипажа от воздействия как КМ, так и космической пыли, микрометеороидов.

В настоящее время используются три варианта защиты КА от данной угрозы. Столкновение с наблюдаемым космическим мусором (габаритами 100 и более миллиметров) возможно спрогнозировать и провести манёвр уклонения [1]. Для защиты от ненаблюдаемого КМ служат защитные экраны, щиты и т.п. Так же для повышения «живучести» и работоспособности КА применяется дублирование особо важных систем.

При проектировании защитных экранов требуется оценка способности обеспечения безопасности КА и минимизация массы данных экранов ввиду высокой стоимости запуска на орбиту КА за килограмм. Стоит рассматривать не только непосредственное пробитие защитного экрана фрагментом КМ, но и запреградное поражение, возникающее в результате прохождения по материалу ударной волны и последующим отколом части защитного экрана. Оценку защиту на этапе проектирования возможно произвести только при расчётах по эмпирическим зависимостям, либо по результатам экспериментов. Экспериментальные установки достаточно сложны в изготовлении и дороги в применении, а возможность моделирования скорости у них ограничены скоростью до 11 км/с, в связи с чем, для анализа высокоскоростного удара КМ и защитного экрана возможно проведение математического моделирования с помощью программы ANSYS, позволяющей выполнять автоматизированные инженерные расчёты динамических процессов в двухмерной и трёхмерной постановке. Имеющийся в программе модуль Workbench с компонентом моделирования AUTODYN позволяет производить анализ и расчёт прочности конструкции на воздействие ударной, взрывной и прочих постоянных и переменных нагрузок возникающих при моделировании защитных экранов [2].

1. Описание метода


ANSYS AUTODYN содержит множество решателей и различных методов, использующих, как подходы Лагранжа, так и Эйлера к течению сплошной среды, произвольную лагранжево-эйлерову постановку, а также метод гидродинамики сглаженных частиц SPH, лежащий в основе непривязанного к сетке решателя [3]. Он позволяет учитывать сложное анизотропное упругопластичное поведение материалов, нелинейный характер ударно-волнового сжатия, анизотропное разрушение с эффектами прогрессирующего разупрочнения [4].

Все решатели AUTODYN можно разделить на Лагранжевы, Эйлеровы, произвольный Лагранжево-Эйлеров метод (ALE) и метод сглаженных частиц (SPH) [5].

2. Моделирование высокоскоростного удара частицей космического мусора

Моделирование высокоскоростного удара частицей КМ сэндвич панели защитного экрана из вспененного алюминия можно разделить на две стадии: пробой первого слоя, представляющего из себя тонкий алюминиевый лист, благодаря которому происходит разрушение мелкого КМ на ещё более мелкие частицы, увеличение площади поражения, незначительное снижение скорости, и пробой второго слоя из вспененного алюминия, в котором происходит поглощение и остановка мелких частиц первоначального ударника. Для данного расчёта методом SPH использовались следующие данные: в качестве частицы КМ принят шар диаметром 3 мм из алюминиевого сплава плотностью 2700 кг/м³, в качестве первого и третьего слоёв защитного экрана рассматривалась пластина габаритами 0,5х20х20 см, также из алюминиевого сплава плотностью 2700 кг/м³. Второй слой защитного экрана представляет собой пластину из вспененного алюминия и габаритами hx20x20 см, где толщина h изменялась от 10 до 20 мм. Для материала второго слоя принято допущение, что он является изотропным без учёта его пористости с плотностью 500 кг/м³ [6]. Рассматривалась скорость соударения равная от 7 до 9 км/с.

Перед моделированием непосредственно высокоскоростного удара частицы КМ с сэндвич панелью выполнен расчет стойкости панели из алюминия. Результаты расчёта приведены на рисунке 1.

Рис. 1. Результаты моделирования высокоскоростного удара со скоростью 8 км/с частицы диаметром 3 мм с пластиной алюминия толщиной 0,5 мм

Полученный, при математическом моделировании результат, соответствует результатам пробития тонких защитных экранов (рис. 2) [7]. Так же расчёты при различных скоростях показали достоверность данных при сравнении с результатами, приведёнными в работе [8].

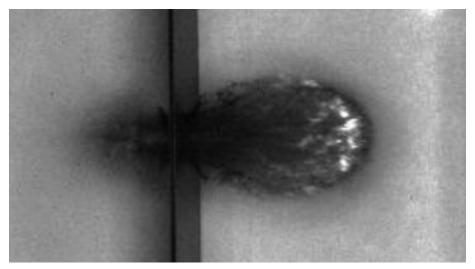


Рис. 2. Разлёт осколков фрагмента КМ в результате пробития тонкой пластины из алюминия

После подтверждения достоверности расчётов пробития тонкой пластины алюминия проводились расчёты высокоскоростного удара с сэндвич панелью (рис.3).

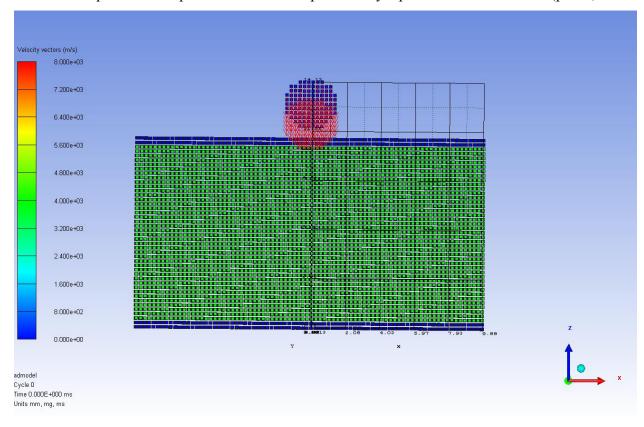
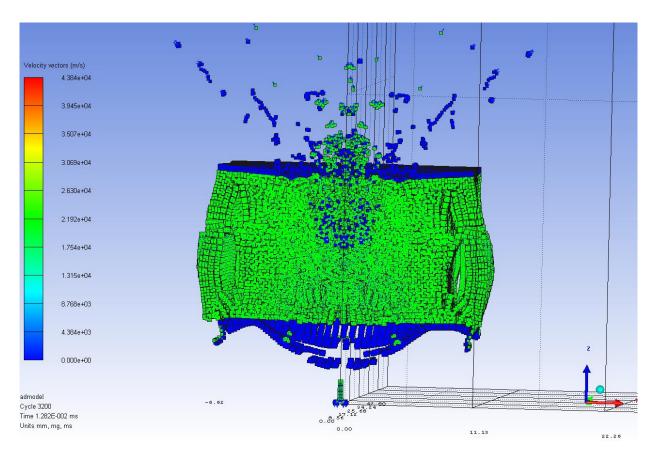
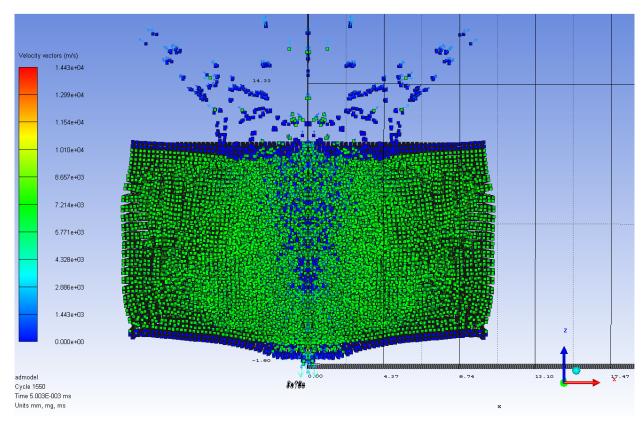




Рис. 3. Модель сэндвич панели

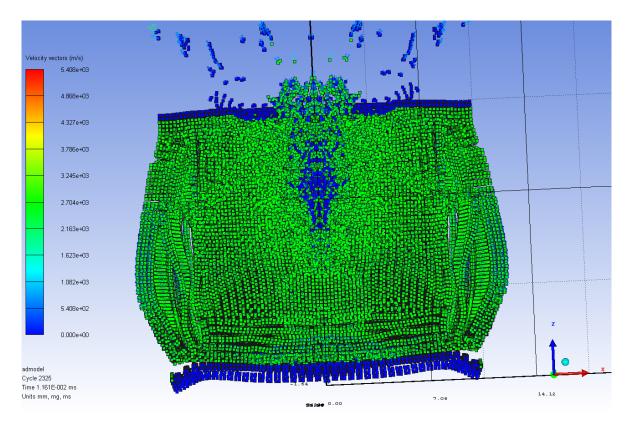

Отдельные результаты расчётов приведены на рисунках 4 - 6.

Рис. 4. Результаты моделирования высокоскоростного удара со скоростью 7 км/с частицы диаметром 3 мм с сэндвич панелью с заполнителем в виде вспененного алюминия толщиной 12 мм

Рис. 5. Результаты моделирования высокоскоростного удара со скоростью 7 км/с частицы диаметром 3 мм с сэндвич панелью с заполнителем в виде вспененного алюминия толщиной 14 мм

Рис. 6. Результаты моделирования высокоскоростного удара со скоростью 7 км/с частицы диаметром 3 мм с сэндвич панелью с заполнителем в виде вспененного алюминия толщиной 20 мм

Полученные при математическом моделирование результаты соответствуют результатам экспериментов, приведённым в работе [9] (рис. 8). В результате удара происходит интенсивное разрушение фрагмента КМ об первый слой защитного экрана, незначительный выброс материала преграды и торможение мелких фрагментов разрушившегося КМ во втором слое защитного экрана.

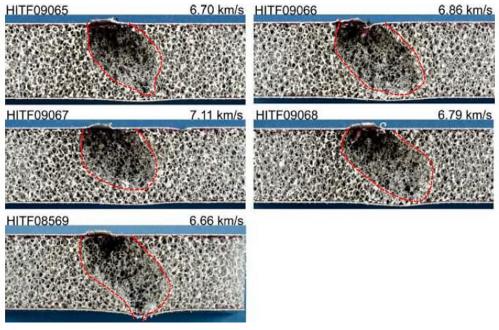


Рис. 8. Пробитие пяти мишеней при диаметре КМ 2,7 мм и скоростях от 6,65 до 7,11 км/с

Полученные результаты сведены в зависимость оптимальной толщины защитного экрана от скорости используемого ударника (рис. 9).

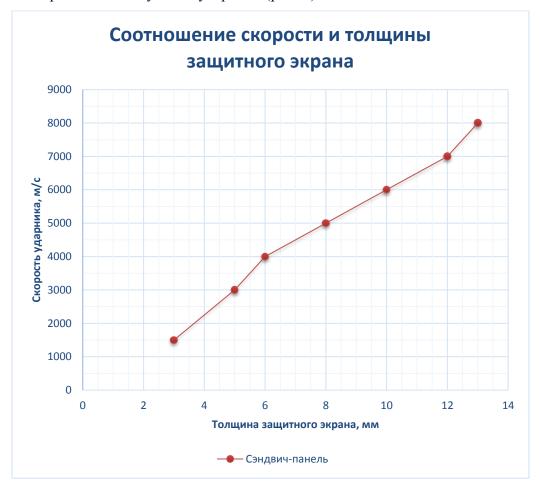


Рис. 9. Зависимость толщины защитного экрана от скорости ударника

Заключение

Результаты моделирования высокоскоростного удара частицы КМ с сэндвич панелью с использованием метода SPH достаточно хорошо согласуются с экспериментальными данными, что позволяет выбирать параметры данных панелей на основе вспененного алюминия при использовании их в качестве защитных экранов для КА.

Список литературы

[1]. Astromaterials Research and Exploration Science. // Сайт NASA. Режим доступа: https://ares.jsc.nasa.gov/orbital_debris/hvit/space-environment (дата обращения 05.05.2018). [2]. ANSYS AUTODYN. // Сайт САДргобі. Режим доступа: http://www.cadprofi.ru/wiki/index.php/ANSYS_AUTODYN (дата обращения 05.05.2018).

- [3]. ANSYS. Группа компаний «ПЛМ Урал» «Делкам-Урал» Единый центр поддержки Продуктов ANSYS в России и странах СНГ. Режим доступа: http://cae-expert.ru (дата обращения 07.05. 2018).
- [4]. Зеленцов В.В., Маханьков А.В. Численное моделирование методом SPH взаимодействия фрагментов космического мусора с элементами конструкций космических аппаратов // Наука и Образование МГТУ им. Н.Э. Баумана. Электронный журнал. 2017. № 5. С. 42-56.
- [5]. David Stowe, Ryan Kupchella, Hua Pan, John Cogar. Investigation of S-SPH for Hypervelocity Impact Calculations // Procedia Engineering. 2015. Vol. 103. P. 585 592. DOI: 10.1016/j.proeng.2015.04.076
- [6]. Fraunhofer M. Foaminal properties overview and design guideline. Режим доступа: http://www.ifam.fraunhofer.de/content/dam/ifam/de/documents/IFAM-
- Bremen/2801/leichtbauwerkstoffe/metallschaeume/design/design_guidelines_english_V14.pdf (дата обращения 09.05.2018).
- [7]. Masumi Higashide, Takumi Kusano, Yuu Takayanagi, Kazuyoshi Arai, Sunao Hasegawa. Comparison of Aluminum Alloy and CFRP Bumpersfor Space Debris Protection // Procedia Engineering. 2015. Vol. 103. P. 189 196. DOI: 10.1016/j.proeng.2015.04.026
- [8]. Andrew J. Piekutowski, Kevin L. Poormon. Holes Formed in Thin Aluminum Sheets by Spheres with Impact Velocities Ranging from 2 to 10 Km/S // Procedia Engineering. 2015. Vol. 103. P. 482 489. DOI: 10.1016/j.proeng.2015.04.063
- [9]. Shannon Ryan, Eric L. Christiansen. Hypervelocity Impact Testing of Aluminum Foam Core Sandwich Panels // National Technical Information Service. Houston: Johnson Space Center. 2015. November. 96 p. NASA/TM-2015-218593.