Другие журналы

электронный журнал


Издатель Академия инженерных наук им. А.М. Прохорова. Эл No. ФС77-51038. ISSN 2307-0609

Адсорбционные системы аккумулирования природного газа: обзор адсорбционных материалов, технических решений и подходов к математическому моделированию

Молодежный научно-технический вестник # 01, март 2018
Файл статьи: Атаманов...И.Н..pdf (602.05Кб)
авторы: Атаманов Г. Б., Козицын Е. А., Кравченко И. Н.

Список литературы

      [1].      González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications // Renewable and Sustainable Energy Reviews. 2018. V. 82. P. 1393–1414.
      [2].      Biloé, S., Goetz V., Guillot A. Optimal Design of an Activated Carbon for an Adsorbed Natural Gas Storage System // Carbon. 2002. V. 40 (8). P. 1295–1308.
      [3].      Thu K., Kim Y.D., Ismail A.B., Saha B.B., Ng K.C. Adsorption Characteristics of Methane on Maxsorb III by Gravimetric Method // Applied Thermal Engineering. 2014. V. 72. P. 200–205.
      [4].      Policicchio A., Filosa R., Abate S., Desiderio G., Colavita E. Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview // Journal of Porous Materials. 2017. V. 24 (4). P. 905–922.
      [5].      Vilella P.C., Lira J.A., Azevedo D.C.S., Bastos-Neto M., Stefanutti R. Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes // Industrial Crops and Products. 2017. V. 109. P. 134–140.
      [6].      Rios R.B., Bastos-Neto M., Amora Jr M.R., Torres A.E.B., Cavalcante Jr C.L., Azevedo D.C.S. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption // Fuel (Guildford). 2011. V. 90. P.113–119.
      [7].      Stadie N. Synthesis and Thermodynamic Studies of Physisorptive. Energy Storage Materials. Thesis by. Nicholas Stadie. In Partial Fulfillment of the Requirements for the Degree of. Doctor of Philosophy. Pasadena: California Institute of Technology, 2013. 179 p.
      [8].      Policicchio A., Maccallinia E., Agostino R.G., Ciuchi F., Aloise A., Giordano G. Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications // Fuel. 2013. V. 104. P. 813–821.
      [9].      Prauchner M.J., Sapag K., Rodríguez-Reinoso F. Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2 // Carbon. 2016. V. 110. P. 138–147.
    [10].    Merkel A., Gensterblum Y., Krooss B.M., Amann A. Competitive sorption of CH4, CO2 and H2O on natural coals of different rank // International Journal of Coal Geology. 2015. V. 150–151. P. 181–192.
    [11].    Byamba-Ochir N., Shim W.G., Balathanigaimani M.S., Moon H. High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption // Applied Energy. 2017. V. 190. P. 257–265.
    [12].    Beckner M., & Dailly A. Adsorbed methane storage for vehicular applications // Applied Energy. 2015. V. 149. P. 69–74.
    [13].    Menon V.C., Komarneni S. Porous Adsorbents for Vehicular Natural Gas Storage: A Review // Journal of Porous Materials. 1998. V. 5. P. 43–58.
    [14].    Ning G., Xu C., Mu L., Chen G., Wang G., Gao J., Fan Z., Qian W., Wei F. High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner // Chemical Communications. 2012. V. 48. P. 6815–6817.
    [15].    Mahmoudian L., Rashidi A., Dehghani H., Rahighi R. Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption // Chemical Engineering Journal. 2016. V. 304. P. 784–792.
    [16].    Ning G., Wang H., Zhang X., Xu C., Chen G., Gao J. Synthesis and methane storage of binder-free porous graphene monoliths // Particuology. 2013. V. 11. P. 415–420.
    [17].    Zhang X., Wang W. Methane adsorption in single-walled carbon nanotubes arrays by molecular simulation and density functional theory // Fluid Phase Equilibria. 2002. V. 194–197. P. 289–295.
    [18].    Стриженов Е.М. Разработка и исследование энергоэффективных процессов адсорбционного аккумулирования метана: дис. … канд. техн. наук. М., 2016. 224 с.
    [19].    Szczęśniak B., Choma J., Jaroniec M. Gas adsorption properties of graphene-based materials // Advances in Colloid and Interface Science. 2017. V. 243. P. 46–59.
    [20].    Konstas K., Osl T., Yang Y., Batten M., Burke N., Hill A.J., Hill M.R. Methane storage in metal organic frameworks // Journal of Materials Chemistry. 2012. V. 22 (33). P. 16698–16708.
    [21].    Jiang J., Furukawa H., Zhang Y-B., Yaghi O.M. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links // Journal of the American Chemical Society. 2016. V. 138. P. 10244–10251.
    [22].    Anbia M., Sheykhi S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption // Journal of Industrial and Engineering Chemistry. 2013. V. 19. P. 1583–1586.
    [23].    Vasiliev L.L., Kanonchik L.E., Tsitovich A.P. Adsorption system with heat pipe thermal control for mobile storage of gaseous fuel // International Journal of Thermal Sciences. 2017. V. 120. P. 252–262.
    [24].    Mota J.P.B. Adsorbed natural gas technology // Recent Advances in Adsorption Processes for Environmental Protection and Security. 2008. P. 177–192.
    [25].    Rahman K.A., Loh W.S., Chakraborty A., Saha B.B., Chun W.G., Ng K.C. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage // Applied Thermal Engineering. 2011. V. 31. P. 1630–1639.
    [26].    Goetz V. and Biloe S. Efficient Dynamic Charge and Discharge of an Adsorbed Natural Gas Storage System // Chemical Engineering Communications. 2005. V. 192:7. P. 876–896.
    [27].    Pupier O., Goetz V., Fiscal R.. Effect of cycling operations on an adsorbed natural gas storage // Chemical Engineering and Processing. 2005. V. 44. P. 71–79.
    [28].    Ybyraiymkul D., Ng K.C., Кaltayev A. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel // Applied Thermal Engineering. 2017. V. 125. P. 523–531.
    [29].    Mahboub M., Ahmadpour A., Rashidi H. Improving methane storage on wet activated carbons at various amounts of water // Journal of fuel chemistry and technology. 2012. V. 40 (4). P. 385–389.
    [30].    Najibi H., Chapoy A., Tohidi B. Methane/natural gas storage and delivered capacity for activated carbons in dry and wet conditions // Fuel. 2012. V. 87. P. 7–13.
    [31].    Feroldi M, Neves A.C, Borba C.E, Alves H.J. Methane storage in activated carbon at low pressure under different temperatures and flow rates of charge // Journal of Cleaner Production. 2018. V. 172. P. 921–926.
    [32].    Zheng Q.R., Zhu Z.W., Feng Y.L., Wang X.H. Development of composite adsorbents and storage vessels for domestically used adsorbed natural gas // Applied Thermal Engineering. 2016. V. 98. P. 778–785.
    [33].    Basumatary R. Thermal modeling of activated carbon based adsorptive natural gas storage system // Carbon. 2004. V. 43. P. 541–549.
    [34].    Трифонова Т.А. Сравнительный анализ моделей Дарси и Бринкмана при исследовании нестационарных режимов сопряженной естественной конвекции в пористой цилиндрической области // Компьютерные исследования и моделирование. 2013. №4. C. 623–634.
    [35].    Van Der Vaart R., Huiskes C., Bosch H., Reith T. Single and Mixed Gas Adsorption Equilibria of Carbon Dioxide/Methane on Activated Carbon // Adsorption. 2000. V. 6 (4). P. 311–323.
    [36].    Mota J.P.B. A Simulation Model of a High-Capacity Methane Adsorptive Storage System // Adsorption. 1995. P. 17–27.
    [37].    Santos J.C. Performance analysis of a new tank configuration applied to the natural gas storage systems by adsorption // Applied Thermal Engineering. 2009. V. 29. P. 2365–2372.
    [38].    Ruthven D.M. Principles of Adsorption and Adsorption Processes, New York: J. Wiley & Sons, 1984.
    [39].    Santos J.C. Analysis of a new methodology applied to the desorption of natural gas in activated carbon vessels // Applied Thermal Engineering. 2014. V. 73. P. 931–939.
    [40].    Hirata S.C. Modeling and hybrid simulation of slow discharge process of adsorbed methane tanks // International Journal of Thermal Sciences. 2009. V. 48. P. 1176–1183.
    [41].    Sahoo S. Regression equations for predicting discharge performance of adsorbed natural gas storage systems // Applied Thermal Engineering. 2015. V. 86. P. 127–134.
    [42].    Sahoo S. A simple regression equation for predicting charge characteristics of adsorbed natural gas storage systems // Applied Thermal Engineering. 2014. V. 73. P. 1093–1100.
elibrary crossref neicon rusycon

О проекте
Rambler's Top100
Телефон: +7 (499) 263-61-98
© 2003-2018 «Молодежный научно-технический вестник» Тел.: +7 (499) 263-61-98